74366aa061
This ensures that the HoTT library compiles with the option --to_axiom
281 lines
10 KiB
Text
281 lines
10 KiB
Text
/-
|
||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn, Leonardo de Moura
|
||
-/
|
||
prelude
|
||
import init.wf init.tactic init.num init.types init.path
|
||
open eq eq.ops decidable
|
||
open algebra sum
|
||
set_option class.force_new true
|
||
|
||
notation `ℕ` := nat
|
||
|
||
namespace nat
|
||
protected definition rec_on [reducible] [recursor] [unfold 2]
|
||
{C : ℕ → Type} (n : ℕ) (H₁ : C 0) (H₂ : Π (a : ℕ), C a → C (succ a)) : C n :=
|
||
nat.rec H₁ H₂ n
|
||
|
||
protected definition cases_on [reducible] [recursor] [unfold 2]
|
||
{C : ℕ → Type} (n : ℕ) (H₁ : C 0) (H₂ : Π (a : ℕ), C (succ a)) : C n :=
|
||
nat.rec H₁ (λ a ih, H₂ a) n
|
||
|
||
protected definition no_confusion_type.{u} [reducible] (P : Type.{u}) (v₁ v₂ : ℕ) : Type.{u} :=
|
||
nat.rec
|
||
(nat.rec
|
||
(P → lift P)
|
||
(λ a₂ ih, lift P)
|
||
v₂)
|
||
(λ a₁ ih, nat.rec
|
||
(lift P)
|
||
(λ a₂ ih, (a₁ = a₂ → P) → lift P)
|
||
v₂)
|
||
v₁
|
||
|
||
protected definition no_confusion [reducible] [unfold 4]
|
||
{P : Type} {v₁ v₂ : ℕ} (H : v₁ = v₂) : nat.no_confusion_type P v₁ v₂ :=
|
||
eq.rec (λ H₁ : v₁ = v₁, nat.rec (λ h, lift.up h) (λ a ih h, lift.up (h (eq.refl a))) v₁) H H
|
||
|
||
/- basic definitions on natural numbers -/
|
||
inductive le (a : ℕ) : ℕ → Type :=
|
||
| nat_refl : le a a -- use nat_refl to avoid overloading le.refl
|
||
| step : Π {b}, le a b → le a (succ b)
|
||
|
||
definition nat_has_le [instance] [reducible] [priority nat.prio]: has_le nat := has_le.mk nat.le
|
||
|
||
protected definition le_refl [refl] : Π a : nat, a ≤ a :=
|
||
le.nat_refl
|
||
|
||
protected definition lt [reducible] (n m : ℕ) := succ n ≤ m
|
||
definition nat_has_lt [instance] [reducible] [priority nat.prio] : has_lt nat := has_lt.mk nat.lt
|
||
|
||
definition pred [unfold 1] (a : nat) : nat :=
|
||
nat.cases_on a zero (λ a₁, a₁)
|
||
|
||
-- add is defined in init.reserved_notation
|
||
|
||
protected definition sub (a b : nat) : nat :=
|
||
nat.rec_on b a (λ b₁, pred)
|
||
|
||
protected definition mul (a b : nat) : nat :=
|
||
nat.rec_on b zero (λ b₁ r, r + a)
|
||
|
||
definition nat_has_sub [instance] [reducible] [priority nat.prio] : has_sub nat :=
|
||
has_sub.mk nat.sub
|
||
|
||
definition nat_has_mul [instance] [reducible] [priority nat.prio] : has_mul nat :=
|
||
has_mul.mk nat.mul
|
||
|
||
/- properties of ℕ -/
|
||
|
||
protected definition is_inhabited [instance] : inhabited nat :=
|
||
inhabited.mk zero
|
||
|
||
protected definition has_decidable_eq [instance] [priority nat.prio] : Π x y : nat, decidable (x = y)
|
||
| has_decidable_eq zero zero := inl rfl
|
||
| has_decidable_eq (succ x) zero := inr (by contradiction)
|
||
| has_decidable_eq zero (succ y) := inr (by contradiction)
|
||
| has_decidable_eq (succ x) (succ y) :=
|
||
match has_decidable_eq x y with
|
||
| inl xeqy := inl (by rewrite xeqy)
|
||
| inr xney := inr (λ h : succ x = succ y, by injection h with xeqy; exact absurd xeqy xney)
|
||
end
|
||
|
||
/- properties of inequality -/
|
||
|
||
protected definition le_of_eq {n m : ℕ} (p : n = m) : n ≤ m := p ▸ !nat.le_refl
|
||
|
||
definition le_succ (n : ℕ) : n ≤ succ n := le.step !nat.le_refl
|
||
|
||
definition pred_le (n : ℕ) : pred n ≤ n := by cases n;repeat constructor
|
||
|
||
definition le_succ_iff_unit [simp] (n : ℕ) : n ≤ succ n ↔ unit :=
|
||
iff_unit_intro (le_succ n)
|
||
|
||
definition pred_le_iff_unit [simp] (n : ℕ) : pred n ≤ n ↔ unit :=
|
||
iff_unit_intro (pred_le n)
|
||
|
||
protected definition le_trans {n m k : ℕ} (H1 : n ≤ m) : m ≤ k → n ≤ k :=
|
||
le.rec H1 (λp H2, le.step)
|
||
|
||
definition le_succ_of_le {n m : ℕ} (H : n ≤ m) : n ≤ succ m := nat.le_trans H !le_succ
|
||
|
||
definition le_of_succ_le {n m : ℕ} (H : succ n ≤ m) : n ≤ m := nat.le_trans !le_succ H
|
||
|
||
protected definition le_of_lt {n m : ℕ} (H : n < m) : n ≤ m := le_of_succ_le H
|
||
|
||
definition succ_le_succ {n m : ℕ} : n ≤ m → succ n ≤ succ m :=
|
||
le.rec !nat.le_refl (λa b, le.step)
|
||
|
||
theorem pred_le_pred {n m : ℕ} : n ≤ m → pred n ≤ pred m :=
|
||
le.rec !nat.le_refl (nat.rec (λa b, b) (λa b c, le.step))
|
||
|
||
theorem le_of_succ_le_succ {n m : ℕ} : succ n ≤ succ m → n ≤ m :=
|
||
pred_le_pred
|
||
|
||
theorem le_succ_of_pred_le {n m : ℕ} : pred n ≤ m → n ≤ succ m :=
|
||
nat.cases_on n le.step (λa, succ_le_succ)
|
||
|
||
theorem not_succ_le_zero (n : ℕ) : ¬succ n ≤ 0 :=
|
||
by intro H; cases H
|
||
|
||
theorem succ_le_zero_iff_empty (n : ℕ) : succ n ≤ 0 ↔ empty :=
|
||
iff_empty_intro !not_succ_le_zero
|
||
|
||
theorem not_succ_le_self : Π {n : ℕ}, ¬succ n ≤ n :=
|
||
nat.rec !not_succ_le_zero (λa b c, b (le_of_succ_le_succ c))
|
||
|
||
theorem succ_le_self_iff_empty [simp] (n : ℕ) : succ n ≤ n ↔ empty :=
|
||
iff_empty_intro not_succ_le_self
|
||
|
||
definition zero_le : Π (n : ℕ), 0 ≤ n :=
|
||
nat.rec !nat.le_refl (λa, le.step)
|
||
|
||
theorem zero_le_iff_unit [simp] (n : ℕ) : 0 ≤ n ↔ unit :=
|
||
iff_unit_intro !zero_le
|
||
|
||
theorem lt.step {n m : ℕ} : n < m → n < succ m := le.step
|
||
|
||
theorem zero_lt_succ (n : ℕ) : 0 < succ n :=
|
||
succ_le_succ !zero_le
|
||
|
||
theorem zero_lt_succ_iff_unit [simp] (n : ℕ) : 0 < succ n ↔ unit :=
|
||
iff_unit_intro (zero_lt_succ n)
|
||
|
||
protected theorem lt_trans {n m k : ℕ} (H1 : n < m) : m < k → n < k :=
|
||
nat.le_trans (le.step H1)
|
||
|
||
protected theorem lt_of_le_of_lt {n m k : ℕ} (H1 : n ≤ m) : m < k → n < k :=
|
||
nat.le_trans (succ_le_succ H1)
|
||
|
||
protected theorem lt_of_lt_of_le {n m k : ℕ} : n < m → m ≤ k → n < k := nat.le_trans
|
||
|
||
protected theorem lt_irrefl (n : ℕ) : ¬n < n := not_succ_le_self
|
||
|
||
theorem lt_self_iff_empty (n : ℕ) : n < n ↔ empty :=
|
||
iff_empty_intro (λ H, absurd H (nat.lt_irrefl n))
|
||
|
||
theorem self_lt_succ (n : ℕ) : n < succ n := !nat.le_refl
|
||
|
||
theorem self_lt_succ_iff_unit [simp] (n : ℕ) : n < succ n ↔ unit :=
|
||
iff_unit_intro (self_lt_succ n)
|
||
|
||
theorem lt.base (n : ℕ) : n < succ n := !nat.le_refl
|
||
|
||
theorem le_lt_antisymm {n m : ℕ} (H1 : n ≤ m) (H2 : m < n) : empty :=
|
||
!nat.lt_irrefl (nat.lt_of_le_of_lt H1 H2)
|
||
|
||
protected theorem le_antisymm {n m : ℕ} (H1 : n ≤ m) : m ≤ n → n = m :=
|
||
le.cases_on H1 (λa, rfl) (λa b c, absurd (nat.lt_of_le_of_lt b c) !nat.lt_irrefl)
|
||
|
||
theorem lt_le_antisymm {n m : ℕ} (H1 : n < m) (H2 : m ≤ n) : empty :=
|
||
le_lt_antisymm H2 H1
|
||
|
||
protected theorem nat.lt_asymm {n m : ℕ} (H1 : n < m) : ¬ m < n :=
|
||
le_lt_antisymm (nat.le_of_lt H1)
|
||
|
||
theorem not_lt_zero (a : ℕ) : ¬ a < 0 := !not_succ_le_zero
|
||
|
||
theorem lt_zero_iff_empty [simp] (a : ℕ) : a < 0 ↔ empty :=
|
||
iff_empty_intro (not_lt_zero a)
|
||
|
||
protected theorem eq_sum_lt_of_le {a b : ℕ} (H : a ≤ b) : a = b ⊎ a < b :=
|
||
le.cases_on H (inl rfl) (λn h, inr (succ_le_succ h))
|
||
|
||
protected theorem le_of_eq_sum_lt {a b : ℕ} (H : a = b ⊎ a < b) : a ≤ b :=
|
||
sum.rec_on H !nat.le_of_eq !nat.le_of_lt
|
||
|
||
-- less-than is well-founded
|
||
definition lt.wf [instance] : well_founded (lt : ℕ → ℕ → Type₀) :=
|
||
begin
|
||
constructor, intro n, induction n with n IH,
|
||
{ constructor, intros n H, exfalso, exact !not_lt_zero H},
|
||
{ constructor, intros m H,
|
||
assert aux : ∀ {n₁} (hlt : m < n₁), succ n = n₁ → acc lt m,
|
||
{ intros n₁ hlt, induction hlt,
|
||
{ intro p, injection p with q, exact q ▸ IH},
|
||
{ intro p, injection p with q, exact (acc.inv (q ▸ IH) a)}},
|
||
apply aux H rfl},
|
||
end
|
||
|
||
definition measure {A : Type} : (A → ℕ) → A → A → Type₀ :=
|
||
inv_image lt
|
||
|
||
definition measure.wf {A : Type} (f : A → ℕ) : well_founded (measure f) :=
|
||
inv_image.wf f lt.wf
|
||
|
||
theorem succ_lt_succ {a b : ℕ} : a < b → succ a < succ b :=
|
||
succ_le_succ
|
||
|
||
theorem lt_of_succ_lt {a b : ℕ} : succ a < b → a < b :=
|
||
le_of_succ_le
|
||
|
||
theorem lt_of_succ_lt_succ {a b : ℕ} : succ a < succ b → a < b :=
|
||
le_of_succ_le_succ
|
||
|
||
definition decidable_le [instance] [priority nat.prio] : Π a b : nat, decidable (a ≤ b) :=
|
||
nat.rec (λm, (decidable.inl !zero_le))
|
||
(λn IH m, !nat.cases_on (decidable.inr (not_succ_le_zero n))
|
||
(λm, decidable.rec (λH, inl (succ_le_succ H))
|
||
(λH, inr (λa, H (le_of_succ_le_succ a))) (IH m)))
|
||
|
||
definition decidable_lt [instance] [priority nat.prio] : Π a b : nat, decidable (a < b) :=
|
||
λ a b, decidable_le (succ a) b
|
||
|
||
protected theorem lt_sum_ge (a b : ℕ) : a < b ⊎ a ≥ b :=
|
||
nat.rec (inr !zero_le) (λn, sum.rec
|
||
(λh, inl (le_succ_of_le h))
|
||
(λh, sum.rec_on (nat.eq_sum_lt_of_le h) (λe, inl (eq.subst e !nat.le_refl)) inr)) b
|
||
|
||
protected definition lt_ge_by_cases {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a ≥ b → P) : P :=
|
||
by_cases H1 (λh, H2 (sum.rec_on !nat.lt_sum_ge (λa, absurd a h) (λa, a)))
|
||
|
||
protected definition lt_by_cases {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a = b → P)
|
||
(H3 : b < a → P) : P :=
|
||
nat.lt_ge_by_cases H1 (λh₁,
|
||
nat.lt_ge_by_cases H3 (λh₂, H2 (nat.le_antisymm h₂ h₁)))
|
||
|
||
protected theorem lt_trichotomy (a b : ℕ) : a < b ⊎ a = b ⊎ b < a :=
|
||
nat.lt_by_cases (λH, inl H) (λH, inr (inl H)) (λH, inr (inr H))
|
||
|
||
protected theorem eq_sum_lt_of_not_lt {a b : ℕ} (hnlt : ¬ a < b) : a = b ⊎ b < a :=
|
||
sum.rec_on (nat.lt_trichotomy a b)
|
||
(λ hlt, absurd hlt hnlt)
|
||
(λ h, h)
|
||
|
||
theorem lt_succ_of_le {a b : ℕ} : a ≤ b → a < succ b :=
|
||
succ_le_succ
|
||
|
||
theorem lt_of_succ_le {a b : ℕ} (h : succ a ≤ b) : a < b := h
|
||
|
||
theorem succ_le_of_lt {a b : ℕ} (h : a < b) : succ a ≤ b := h
|
||
|
||
theorem succ_sub_succ_eq_sub [simp] (a b : ℕ) : succ a - succ b = a - b :=
|
||
nat.rec (by esimp) (λ b, ap pred) b
|
||
|
||
theorem sub_eq_succ_sub_succ (a b : ℕ) : a - b = succ a - succ b :=
|
||
inverse !succ_sub_succ_eq_sub
|
||
|
||
theorem zero_sub_eq_zero [simp] (a : ℕ) : 0 - a = 0 :=
|
||
nat.rec rfl (λ a, ap pred) a
|
||
|
||
theorem zero_eq_zero_sub (a : ℕ) : 0 = 0 - a :=
|
||
inverse !zero_sub_eq_zero
|
||
|
||
theorem sub_le (a b : ℕ) : a - b ≤ a :=
|
||
nat.rec_on b !nat.le_refl (λ b₁, nat.le_trans !pred_le)
|
||
|
||
theorem sub_le_iff_unit [simp] (a b : ℕ) : a - b ≤ a ↔ unit :=
|
||
iff_unit_intro (sub_le a b)
|
||
|
||
theorem sub_lt {a b : ℕ} (H1 : 0 < a) (H2 : 0 < b) : a - b < a :=
|
||
!nat.cases_on (λh, absurd h !nat.lt_irrefl)
|
||
(λa h, succ_le_succ (!nat.cases_on (λh, absurd h !nat.lt_irrefl)
|
||
(λb c, tr_rev _ !succ_sub_succ_eq_sub !sub_le) H2)) H1
|
||
|
||
theorem sub_lt_succ (a b : ℕ) : a - b < succ a :=
|
||
lt_succ_of_le !sub_le
|
||
|
||
theorem sub_lt_succ_iff_unit [simp] (a b : ℕ) : a - b < succ a ↔ unit :=
|
||
iff_unit_intro !sub_lt_succ
|
||
end nat
|