lean2/tests/lean/run/class8.lean
Leonardo de Moura a5f0593df1 feat(*): change inductive datatype syntax
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-08-22 15:46:10 -07:00

33 lines
No EOL
934 B
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import standard
using num tactic prod
inductive inh (A : Type) : Prop :=
inh_intro : A -> inh A
instance inh_intro
theorem inh_elim {A : Type} {B : Prop} (H1 : inh A) (H2 : A → B) : B
:= inh_rec H2 H1
theorem inh_exists [instance] {A : Type} {P : A → Prop} (H : ∃x, P x) : inh A
:= obtain w Hw, from H, inh_intro w
theorem inh_bool [instance] : inh Prop
:= inh_intro true
theorem inh_fun [instance] {A B : Type} (H : inh B) : inh (A → B)
:= inh_rec (λb, inh_intro (λa : A, b)) H
theorem pair_inh [instance] {A : Type} {B : Type} (H1 : inh A) (H2 : inh B) : inh (prod A B)
:= inh_elim H1 (λa, inh_elim H2 (λb, inh_intro (pair a b)))
definition assump := eassumption
tactic_hint assump
theorem tst {A B : Type} (H : inh B) : inh (A → B → B)
theorem T1 {A B C D : Type} {P : C → Prop} (a : A) (H1 : inh B) (H2 : ∃x, P x) : inh ((A → A) × B × (D → C) × Prop)
(*
print(get_env():find("T1"):value())
*)