lean2/hott/hit/pushout.hlean

113 lines
3.7 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: hit.pushout
Authors: Floris van Doorn
Declaration of the pushout
-/
import .type_quotient
open type_quotient eq sum equiv equiv.ops
namespace pushout
section
parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
local abbreviation A := BL + TR
inductive pushout_rel : A → A → Type :=
| Rmk : Π(x : TL), pushout_rel (inl (f x)) (inr (g x))
open pushout_rel
local abbreviation R := pushout_rel
definition pushout : Type := type_quotient pushout_rel -- TODO: define this in root namespace
definition inl (x : BL) : pushout :=
class_of R (inl x)
definition inr (x : TR) : pushout :=
class_of R (inr x)
definition glue (x : TL) : inl (f x) = inr (g x) :=
eq_of_rel pushout_rel (Rmk f g x)
protected definition rec {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
(y : pushout) : P y :=
begin
fapply (type_quotient.rec_on y),
{ intro a, cases a,
apply Pinl,
apply Pinr},
{ intros [a, a', H], cases H, apply Pglue}
end
protected definition rec_on [reducible] {P : pushout → Type} (y : pushout)
(Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x))
(Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x)) : P y :=
rec Pinl Pinr Pglue y
theorem rec_glue {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
(x : TL) : apd (rec Pinl Pinr Pglue) (glue x) = Pglue x :=
!rec_eq_of_rel
protected definition elim {P : Type} (Pinl : BL → P) (Pinr : TR → P)
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (y : pushout) : P :=
rec Pinl Pinr (λx, !tr_constant ⬝ Pglue x) y
protected definition elim_on [reducible] {P : Type} (y : pushout) (Pinl : BL → P)
(Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) : P :=
elim Pinl Pinr Pglue y
theorem elim_glue {P : Type} (Pinl : BL → P) (Pinr : TR → P)
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (x : TL)
: ap (elim Pinl Pinr Pglue) (glue x) = Pglue x :=
begin
apply (@cancel_left _ _ _ _ (tr_constant (glue x) (elim Pinl Pinr Pglue (inl (f x))))),
rewrite [-apd_eq_tr_constant_con_ap,↑elim,rec_glue],
end
protected definition elim_type (Pinl : BL → Type) (Pinr : TR → Type)
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (y : pushout) : Type :=
elim Pinl Pinr (λx, ua (Pglue x)) y
protected definition elim_type_on [reducible] (y : pushout) (Pinl : BL → Type)
(Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) : Type :=
elim_type Pinl Pinr Pglue y
theorem elim_type_glue (Pinl : BL → Type) (Pinr : TR → Type)
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (y : pushout) (x : TL)
: transport (elim_type Pinl Pinr Pglue) (glue x) = Pglue x :=
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_glue];apply cast_ua_fn
end
namespace test
open pushout equiv is_equiv unit bool
private definition unit_of_empty (u : empty) : unit := star
example : pushout unit_of_empty unit_of_empty ≃ bool :=
begin
fapply equiv.MK,
{ intro x, fapply (pushout.rec_on _ _ x),
intro u, exact ff,
intro u, exact tt,
intro c, cases c},
{ intro b, cases b,
exact (inl _ _ ⋆),
exact (inr _ _ ⋆)},
{ intro b, cases b, esimp, esimp},
{ intro x, fapply (pushout.rec_on _ _ x),
intro u, cases u, esimp,
intro u, cases u, esimp,
intro c, cases c},
end
end test
end pushout