lean2/tests/lean/extra/bag.lean
Leonardo de Moura f177082c3b refactor(*): normalize metaclass names
@avigad and @fpvandoorn, I changed the metaclasses names. They
were not uniform:
- The plural was used in some cases (e.g., [coercions]).
- In other cases a cryptic name was used (e.g., [brs]).

Now, I tried to use the attribute name as the metaclass name whenever
possible. For example, we write

   definition foo [coercion] ...
   definition bla [forward] ...

and

  open [coercion] nat
  open [forward] nat

It is easier to remember and is uniform.
2015-12-28 10:39:15 -08:00

690 lines
34 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
Finite bags.
-/
import data.nat data.list.perm algebra.binary
open nat quot list subtype binary function eq.ops algebra
open [decl] perm
variable {A : Type}
definition bag.setoid [instance] (A : Type) : setoid (list A) :=
setoid.mk (@perm A) (mk_equivalence (@perm A) (@perm.refl A) (@perm.symm A) (@perm.trans A))
definition bag (A : Type) : Type :=
quot (bag.setoid A)
namespace bag
definition of_list (l : list A) : bag A :=
⟦l⟧
definition empty : bag A :=
of_list nil
definition singleton (a : A) : bag A :=
of_list [a]
definition insert (a : A) (b : bag A) : bag A :=
quot.lift_on b (λ l, ⟦a::l⟧)
(λ l₁ l₂ h, quot.sound (perm.skip a h))
lemma insert_empty_eq_singleton (a : A) : insert a empty = singleton a :=
rfl
definition insert.comm (a₁ a₂ : A) (b : bag A) : insert a₁ (insert a₂ b) = insert a₂ (insert a₁ b) :=
quot.induction_on b (λ l, quot.sound !perm.swap)
definition append (b₁ b₂ : bag A) : bag A :=
quot.lift_on₂ b₁ b₂ (λ l₁ l₂, ⟦l₁++l₂⟧)
(λ l₁ l₂ l₃ l₄ h₁ h₂, quot.sound (perm_app h₁ h₂))
infix ++ := append
lemma append.comm (b₁ b₂ : bag A) : b₁ ++ b₂ = b₂ ++ b₁ :=
quot.induction_on₂ b₁ b₂ (λ l₁ l₂, quot.sound !perm_app_comm)
lemma append.assoc (b₁ b₂ b₃ : bag A) : (b₁ ++ b₂) ++ b₃ = b₁ ++ (b₂ ++ b₃) :=
quot.induction_on₃ b₁ b₂ b₃ (λ l₁ l₂ l₃, quot.sound (by rewrite list.append.assoc; apply perm.refl))
lemma append_empty_left (b : bag A) : empty ++ b = b :=
quot.induction_on b (λ l, quot.sound (by rewrite append_nil_left; apply perm.refl))
lemma append_empty_right (b : bag A) : b ++ empty = b :=
quot.induction_on b (λ l, quot.sound (by rewrite append_nil_right; apply perm.refl))
lemma append_insert_left (a : A) (b₁ b₂ : bag A) : insert a b₁ ++ b₂ = insert a (b₁ ++ b₂) :=
quot.induction_on₂ b₁ b₂ (λ l₁ l₂, quot.sound (by rewrite append_cons; apply perm.refl))
lemma append_insert_right (a : A) (b₁ b₂ : bag A) : b₁ ++ insert a b₂ = insert a (b₁ ++ b₂) :=
calc b₁ ++ insert a b₂ = insert a b₂ ++ b₁ : append.comm
... = insert a (b₂ ++ b₁) : append_insert_left
... = insert a (b₁ ++ b₂) : append.comm
protected lemma induction_on [recursor 3] {C : bag A → Prop} (b : bag A) (h₁ : C empty) (h₂ : ∀ a b, C b → C (insert a b)) : C b :=
quot.induction_on b (λ l, list.induction_on l h₁ (λ h t ih, h₂ h ⟦t⟧ ih))
section decidable_eq
variable [decA : decidable_eq A]
include decA
open decidable
definition has_decidable_eq [instance] (b₁ b₂ : bag A) : decidable (b₁ = b₂) :=
quot.rec_on_subsingleton₂ b₁ b₂ (λ l₁ l₂,
match decidable_perm l₁ l₂ with
| inl h := inl (quot.sound h)
| inr h := inr (λ n, absurd (quot.exact n) h)
end)
end decidable_eq
section count
variable [decA : decidable_eq A]
include decA
definition count (a : A) (b : bag A) : nat :=
quot.lift_on b (λ l, count a l)
(λ l₁ l₂ h, count_eq_of_perm h a)
lemma count_empty (a : A) : count a empty = 0 :=
rfl
lemma count_insert (a : A) (b : bag A) : count a (insert a b) = succ (count a b) :=
quot.induction_on b (λ l, begin unfold [insert, count], rewrite count_cons_eq end)
lemma count_insert_of_ne {a₁ a₂ : A} (h : a₁ ≠ a₂) (b : bag A) : count a₁ (insert a₂ b) = count a₁ b :=
quot.induction_on b (λ l, begin unfold [insert, count], rewrite (count_cons_of_ne h) end)
lemma count_singleton (a : A) : count a (singleton a) = 1 :=
begin rewrite [-insert_empty_eq_singleton, count_insert] end
lemma count_append (a : A) (b₁ b₂ : bag A) : count a (append b₁ b₂) = count a b₁ + count a b₂ :=
quot.induction_on₂ b₁ b₂ (λ l₁ l₂, begin unfold [append, count], rewrite list.count_append end)
open perm decidable
protected lemma ext {b₁ b₂ : bag A} : (∀ a, count a b₁ = count a b₂) → b₁ = b₂ :=
quot.induction_on₂ b₁ b₂ (λ l₁ l₂ (h : ∀ a, count a ⟦l₁⟧ = count a ⟦l₂⟧),
have gen : ∀ (l₁ l₂ : list A), (∀ a, list.count a l₁ = list.count a l₂) → l₁ ~ l₂
| [] [] h₁ := !perm.refl
| [] (a₂::s₂) h₁ := assert list.count a₂ [] = list.count a₂ (a₂::s₂), from h₁ a₂, by rewrite [count_nil at this, count_cons_eq at this]; contradiction
| (a::s₁) s₂ h₁ :=
assert g₁ : list.count a (a::s₁) > 0, from count_gt_zero_of_mem !mem_cons,
assert list.count a (a::s₁) = list.count a s₂, from h₁ a,
assert list.count a s₂ > 0, by rewrite [-this]; exact g₁,
have a ∈ s₂, from mem_of_count_gt_zero this,
have ∃ l r, s₂ = l++(a::r), from mem_split this,
obtain l r (e₁ : s₂ = l++(a::r)), from this,
have ∀ a, list.count a s₁ = list.count a (l++r), from
take a₁,
assert e₂ : list.count a₁ (a::s₁) = list.count a₁ (l++(a::r)), by rewrite -e₁; exact h₁ a₁,
by_cases
(suppose a₁ = a, begin
rewrite [-this at e₂, list.count_append at e₂, *count_cons_eq at e₂, add_succ at e₂],
injection e₂ with e₃, rewrite e₃,
rewrite list.count_append
end)
(suppose a₁ ≠ a,
by rewrite [list.count_append at e₂, *count_cons_of_ne this at e₂, e₂, list.count_append]),
have ih : s₁ ~ l++r, from gen s₁ (l++r) this,
calc a::s₁ ~ a::(l++r) : perm.skip a ih
... ~ l++(a::r) : perm_middle
... = s₂ : e₁,
quot.sound (gen l₁ l₂ h))
definition insert.inj {a : A} {b₁ b₂ : bag A} : insert a b₁ = insert a b₂ → b₁ = b₂ :=
assume h, bag.ext (take x,
assert e : count x (insert a b₁) = count x (insert a b₂), by rewrite h,
by_cases
(suppose x = a, begin subst x, rewrite [*count_insert at e], injection e, assumption end)
(suppose x ≠ a, begin rewrite [*count_insert_of_ne this at e], assumption end))
end count
section extract
open decidable
variable [decA : decidable_eq A]
include decA
definition extract (a : A) (b : bag A) : bag A :=
quot.lift_on b (λ l, ⟦filter (λ c, c ≠ a) l⟧)
(λ l₁ l₂ h, quot.sound (perm_filter h))
lemma extract_singleton (a : A) : extract a (singleton a) = empty :=
begin unfold [extract, singleton, of_list, filter], rewrite [if_neg (λ h : a ≠ a, absurd rfl h)] end
lemma extract_insert (a : A) (b : bag A) : extract a (insert a b) = extract a b :=
quot.induction_on b (λ l, begin
unfold [insert, extract],
rewrite [@filter_cons_of_neg _ (λ c, c ≠ a) _ _ l (not_not_intro (eq.refl a))]
end)
lemma extract_insert_of_ne {a₁ a₂ : A} (h : a₁ ≠ a₂) (b : bag A) : extract a₁ (insert a₂ b) = insert a₂ (extract a₁ b) :=
quot.induction_on b (λ l, begin
unfold [insert, extract],
rewrite [@filter_cons_of_pos _ (λ c, c ≠ a₁) _ _ l (ne.symm h)]
end)
lemma count_extract (a : A) (b : bag A) : count a (extract a b) = 0 :=
bag.induction_on b rfl
(λ c b ih, by_cases
(suppose a = c, begin subst c, rewrite [extract_insert, ih] end)
(suppose a ≠ c, begin rewrite [extract_insert_of_ne this, count_insert_of_ne this, ih] end))
lemma count_extract_of_ne {a₁ a₂ : A} (h : a₁ ≠ a₂) (b : bag A) : count a₁ (extract a₂ b) = count a₁ b :=
bag.induction_on b rfl
(take x b ih, by_cases
(suppose x = a₁, begin subst x, rewrite [extract_insert_of_ne (ne.symm h), *count_insert, ih] end)
(suppose x ≠ a₁, by_cases
(suppose x = a₂, begin subst x, rewrite [extract_insert, ih, count_insert_of_ne h] end)
(suppose x ≠ a₂, begin
rewrite [count_insert_of_ne (ne.symm `x ≠ a₁`), extract_insert_of_ne (ne.symm this)],
rewrite [count_insert_of_ne (ne.symm `x ≠ a₁`), ih]
end)))
end extract
section erase
variable [decA : decidable_eq A]
include decA
definition erase (a : A) (b : bag A) : bag A :=
quot.lift_on b (λ l, ⟦erase a l⟧)
(λ l₁ l₂ h, quot.sound (erase_perm_erase_of_perm _ h))
lemma erase_empty (a : A) : erase a empty = empty :=
rfl
lemma erase_insert (a : A) (b : bag A) : erase a (insert a b) = b :=
quot.induction_on b (λ l, quot.sound (by rewrite erase_cons_head; apply perm.refl))
lemma erase_insert_of_ne {a₁ a₂ : A} (h : a₁ ≠ a₂) (b : bag A) : erase a₁ (insert a₂ b) = insert a₂ (erase a₁ b) :=
quot.induction_on b (λ l, quot.sound (by rewrite (erase_cons_tail _ h); apply perm.refl))
end erase
section member
variable [decA : decidable_eq A]
include decA
definition mem (a : A) (b : bag A) := count a b > 0
infix ∈ := mem
lemma mem_def (a : A) (b : bag A) : (a ∈ b) = (count a b > 0) :=
rfl
lemma mem_insert (a : A) (b : bag A) : a ∈ insert a b :=
begin unfold mem, rewrite count_insert, exact dec_trivial end
lemma mem_of_list_iff_mem (a : A) (l : list A) : a ∈ of_list l ↔ a ∈ l :=
iff.intro !mem_of_count_gt_zero !count_gt_zero_of_mem
lemma count_of_list_eq_count (a : A) (l : list A) : count a (of_list l) = list.count a l :=
rfl
end member
section union_inter
variable [decA : decidable_eq A]
include decA
open perm decidable
private definition union_list (l₁ l₂ : list A) :=
erase_dup (l₁ ++ l₂)
private lemma perm_union_list {l₁ l₂ l₃ l₄ : list A} (h₁ : l₁ ~ l₃) (h₂ : l₂ ~ l₄) : union_list l₁ l₂ ~ union_list l₃ l₄ :=
perm_erase_dup_of_perm (perm_app h₁ h₂)
private lemma nodup_union_list (l₁ l₂ : list A) : nodup (union_list l₁ l₂) :=
!nodup_erase_dup
private definition not_mem_of_not_mem_union_list_left {a : A} {l₁ l₂ : list A} (h : a ∉ union_list l₁ l₂) : a ∉ l₁ :=
suppose a ∈ l₁,
have a ∈ l₁ ++ l₂, from mem_append_left _ this,
have a ∈ erase_dup (l₁ ++ l₂), from mem_erase_dup this,
absurd this h
private definition not_mem_of_not_mem_union_list_right {a : A} {l₁ l₂ : list A} (h : a ∉ union_list l₁ l₂) : a ∉ l₂ :=
suppose a ∈ l₂,
have a ∈ l₁ ++ l₂, from mem_append_right _ this,
have a ∈ erase_dup (l₁ ++ l₂), from mem_erase_dup this,
absurd this h
private definition gen : nat → A → list A
| 0 a := nil
| (n+1) a := a :: gen n a
private lemma not_mem_gen_of_ne {a b : A} (h : a ≠ b) : ∀ n, a ∉ gen n b
| 0 := !not_mem_nil
| (n+1) := not_mem_cons_of_ne_of_not_mem h (not_mem_gen_of_ne n)
private lemma count_gen : ∀ (a : A) (n : nat), list.count a (gen n a) = n
| a 0 := rfl
| a (n+1) := begin unfold gen, rewrite [count_cons_eq, count_gen] end
private lemma count_gen_eq_zero_of_ne {a b : A} (h : a ≠ b) : ∀ n, list.count a (gen n b) = 0
| 0 := rfl
| (n+1) := begin unfold gen, rewrite [count_cons_of_ne h, count_gen_eq_zero_of_ne] end
private definition max_count (l₁ l₂ : list A) : list A → list A
| [] := []
| (a::l) := if list.count a l₁ ≥ list.count a l₂ then gen (list.count a l₁) a ++ max_count l else gen (list.count a l₂) a ++ max_count l
private definition min_count (l₁ l₂ : list A) : list A → list A
| [] := []
| (a::l) := if list.count a l₁ ≤ list.count a l₂ then gen (list.count a l₁) a ++ min_count l else gen (list.count a l₂) a ++ min_count l
private lemma not_mem_max_count_of_not_mem (l₁ l₂ : list A) : ∀ {a l}, a ∉ l → a ∉ max_count l₁ l₂ l
| a [] h := !not_mem_nil
| a (b::l) h :=
assert ih : a ∉ max_count l₁ l₂ l, from not_mem_max_count_of_not_mem (not_mem_of_not_mem_cons h),
assert a ≠ b, from ne_of_not_mem_cons h,
by_cases
(suppose list.count b l₁ ≥ list.count b l₂, begin
unfold max_count, rewrite [if_pos this],
exact not_mem_append (not_mem_gen_of_ne `a ≠ b` _) ih
end)
(suppose ¬ list.count b l₁ ≥ list.count b l₂, begin
unfold max_count, rewrite [if_neg this],
exact not_mem_append (not_mem_gen_of_ne `a ≠ b` _) ih
end)
private lemma max_count_eq (l₁ l₂ : list A) : ∀ {a : A} {l : list A}, a ∈ l → nodup l → list.count a (max_count l₁ l₂ l) = max (list.count a l₁) (list.count a l₂)
| a [] h₁ h₂ := absurd h₁ !not_mem_nil
| a (b::l) h₁ h₂ :=
assert nodup l, from nodup_of_nodup_cons h₂,
assert b ∉ l, from not_mem_of_nodup_cons h₂,
or.elim h₁
(suppose a = b,
have a ∉ l, by rewrite this; assumption,
assert a ∉ max_count l₁ l₂ l, from not_mem_max_count_of_not_mem l₁ l₂ this,
by_cases
(suppose i : list.count a l₁ ≥ list.count a l₂, begin
unfold max_count, subst b,
rewrite [if_pos i, list.count_append, count_gen, max_eq_left i, count_eq_zero_of_not_mem `a ∉ max_count l₁ l₂ l`]
end)
(suppose i : ¬ list.count a l₁ ≥ list.count a l₂, begin
unfold max_count, subst b,
rewrite [if_neg i, list.count_append, count_gen, max_eq_right_of_lt (lt_of_not_ge i), count_eq_zero_of_not_mem `a ∉ max_count l₁ l₂ l`]
end))
(suppose a ∈ l,
assert a ≠ b, from suppose a = b, by subst b; contradiction,
assert ih : list.count a (max_count l₁ l₂ l) = max (list.count a l₁) (list.count a l₂), from max_count_eq `a ∈ l` `nodup l`,
by_cases
(suppose i : list.count b l₁ ≥ list.count b l₂, begin
unfold max_count,
rewrite [if_pos i, -ih, list.count_append, count_gen_eq_zero_of_ne `a ≠ b`, zero_add]
end)
(suppose i : ¬ list.count b l₁ ≥ list.count b l₂, begin
unfold max_count,
rewrite [if_neg i, -ih, list.count_append, count_gen_eq_zero_of_ne `a ≠ b`, zero_add]
end))
private lemma not_mem_min_count_of_not_mem (l₁ l₂ : list A) : ∀ {a l}, a ∉ l → a ∉ min_count l₁ l₂ l
| a [] h := !not_mem_nil
| a (b::l) h :=
assert ih : a ∉ min_count l₁ l₂ l, from not_mem_min_count_of_not_mem (not_mem_of_not_mem_cons h),
assert a ≠ b, from ne_of_not_mem_cons h,
by_cases
(suppose list.count b l₁ ≤ list.count b l₂, begin
unfold min_count, rewrite [if_pos this],
exact not_mem_append (not_mem_gen_of_ne `a ≠ b` _) ih
end)
(suppose ¬ list.count b l₁ ≤ list.count b l₂, begin
unfold min_count, rewrite [if_neg this],
exact not_mem_append (not_mem_gen_of_ne `a ≠ b` _) ih
end)
private lemma min_count_eq (l₁ l₂ : list A) : ∀ {a : A} {l : list A}, a ∈ l → nodup l → list.count a (min_count l₁ l₂ l) = min (list.count a l₁) (list.count a l₂)
| a [] h₁ h₂ := absurd h₁ !not_mem_nil
| a (b::l) h₁ h₂ :=
assert nodup l, from nodup_of_nodup_cons h₂,
assert b ∉ l, from not_mem_of_nodup_cons h₂,
or.elim h₁
(suppose a = b,
have a ∉ l, by rewrite this; assumption,
assert a ∉ min_count l₁ l₂ l, from not_mem_min_count_of_not_mem l₁ l₂ this,
by_cases
(suppose i : list.count a l₁ ≤ list.count a l₂, begin
unfold min_count, subst b,
rewrite [if_pos i, list.count_append, count_gen, min_eq_left i, count_eq_zero_of_not_mem `a ∉ min_count l₁ l₂ l`]
end)
(suppose i : ¬ list.count a l₁ ≤ list.count a l₂, begin
unfold min_count, subst b,
rewrite [if_neg i, list.count_append, count_gen, min_eq_right (le_of_lt (lt_of_not_ge i)), count_eq_zero_of_not_mem `a ∉ min_count l₁ l₂ l`]
end))
(suppose a ∈ l,
assert a ≠ b, from suppose a = b, by subst b; contradiction,
assert ih : list.count a (min_count l₁ l₂ l) = min (list.count a l₁) (list.count a l₂), from min_count_eq `a ∈ l` `nodup l`,
by_cases
(suppose i : list.count b l₁ ≤ list.count b l₂, begin
unfold min_count,
rewrite [if_pos i, -ih, list.count_append, count_gen_eq_zero_of_ne `a ≠ b`, zero_add]
end)
(suppose i : ¬ list.count b l₁ ≤ list.count b l₂, begin
unfold min_count,
rewrite [if_neg i, -ih, list.count_append, count_gen_eq_zero_of_ne `a ≠ b`, zero_add]
end))
private lemma perm_max_count_left {l₁ l₂ l₃ l₄ : list A} (h₁ : l₁ ~ l₃) (h₂ : l₂ ~ l₄) : ∀ l, max_count l₁ l₂ l ~ max_count l₃ l₄ l
| [] := by esimp
| (a::l) :=
assert e₁ : list.count a l₁ = list.count a l₃, from count_eq_of_perm h₁ a,
assert e₂ : list.count a l₂ = list.count a l₄, from count_eq_of_perm h₂ a,
by_cases
(suppose list.count a l₁ ≥ list.count a l₂,
begin unfold max_count, rewrite [-e₁, -e₂, *if_pos this], exact perm_app !perm.refl !perm_max_count_left end)
(suppose ¬ list.count a l₁ ≥ list.count a l₂,
begin unfold max_count, rewrite [-e₁, -e₂, *if_neg this], exact perm_app !perm.refl !perm_max_count_left end)
private lemma perm_app_left_comm (l₁ l₂ l₃ : list A) : l₁ ++ (l₂ ++ l₃) ~ l₂ ++ (l₁ ++ l₃) :=
calc l₁ ++ (l₂ ++ l₃) = (l₁ ++ l₂) ++ l₃ : list.append.assoc
... ~ (l₂ ++ l₁) ++ l₃ : perm_app !perm_app_comm !perm.refl
... = l₂ ++ (l₁ ++ l₃) : list.append.assoc
private lemma perm_max_count_right {l r : list A} (h : l ~ r) : ∀ l₁ l₂, max_count l₁ l₂ l ~ max_count l₁ l₂ r :=
perm.induction_on h
(λ l₁ l₂, !perm.refl)
(λ x s₁ s₂ p ih l₁ l₂, by_cases
(suppose i : list.count x l₁ ≥ list.count x l₂,
begin unfold max_count, rewrite [*if_pos i], exact perm_app !perm.refl !ih end)
(suppose i : ¬ list.count x l₁ ≥ list.count x l₂,
begin unfold max_count, rewrite [*if_neg i], exact perm_app !perm.refl !ih end))
(λ x y l l₁ l₂, by_cases
(suppose i₁ : list.count x l₁ ≥ list.count x l₂, by_cases
(suppose i₂ : list.count y l₁ ≥ list.count y l₂,
begin unfold max_count, unfold max_count, rewrite [*if_pos i₁, *if_pos i₂], apply perm_app_left_comm end)
(suppose i₂ : ¬ list.count y l₁ ≥ list.count y l₂,
begin unfold max_count, unfold max_count, rewrite [*if_pos i₁, *if_neg i₂], apply perm_app_left_comm end))
(suppose i₁ : ¬ list.count x l₁ ≥ list.count x l₂, by_cases
(suppose i₂ : list.count y l₁ ≥ list.count y l₂,
begin unfold max_count, unfold max_count, rewrite [*if_neg i₁, *if_pos i₂], apply perm_app_left_comm end)
(suppose i₂ : ¬ list.count y l₁ ≥ list.count y l₂,
begin unfold max_count, unfold max_count, rewrite [*if_neg i₁, *if_neg i₂], apply perm_app_left_comm end)))
(λ s₁ s₂ s₃ p₁ p₂ ih₁ ih₂ l₁ l₂, perm.trans (ih₁ l₁ l₂) (ih₂ l₁ l₂))
private lemma perm_max_count {l₁ l₂ l₃ r₁ r₂ r₃ : list A} (p₁ : l₁ ~ r₁) (p₂ : l₂ ~ r₂) (p₃ : l₃ ~ r₃) : max_count l₁ l₂ l₃ ~ max_count r₁ r₂ r₃ :=
calc max_count l₁ l₂ l₃ ~ max_count r₁ r₂ l₃ : perm_max_count_left p₁ p₂
... ~ max_count r₁ r₂ r₃ : perm_max_count_right p₃
private lemma perm_min_count_left {l₁ l₂ l₃ l₄ : list A} (h₁ : l₁ ~ l₃) (h₂ : l₂ ~ l₄) : ∀ l, min_count l₁ l₂ l ~ min_count l₃ l₄ l
| [] := by esimp
| (a::l) :=
assert e₁ : list.count a l₁ = list.count a l₃, from count_eq_of_perm h₁ a,
assert e₂ : list.count a l₂ = list.count a l₄, from count_eq_of_perm h₂ a,
by_cases
(suppose list.count a l₁ ≤ list.count a l₂,
begin unfold min_count, rewrite [-e₁, -e₂, *if_pos this], exact perm_app !perm.refl !perm_min_count_left end)
(suppose ¬ list.count a l₁ ≤ list.count a l₂,
begin unfold min_count, rewrite [-e₁, -e₂, *if_neg this], exact perm_app !perm.refl !perm_min_count_left end)
private lemma perm_min_count_right {l r : list A} (h : l ~ r) : ∀ l₁ l₂, min_count l₁ l₂ l ~ min_count l₁ l₂ r :=
perm.induction_on h
(λ l₁ l₂, !perm.refl)
(λ x s₁ s₂ p ih l₁ l₂, by_cases
(suppose i : list.count x l₁ ≤ list.count x l₂,
begin unfold min_count, rewrite [*if_pos i], exact perm_app !perm.refl !ih end)
(suppose i : ¬ list.count x l₁ ≤ list.count x l₂,
begin unfold min_count, rewrite [*if_neg i], exact perm_app !perm.refl !ih end))
(λ x y l l₁ l₂, by_cases
(suppose i₁ : list.count x l₁ ≤ list.count x l₂, by_cases
(suppose i₂ : list.count y l₁ ≤ list.count y l₂,
begin unfold min_count, unfold min_count, rewrite [*if_pos i₁, *if_pos i₂], apply perm_app_left_comm end)
(suppose i₂ : ¬ list.count y l₁ ≤ list.count y l₂,
begin unfold min_count, unfold min_count, rewrite [*if_pos i₁, *if_neg i₂], apply perm_app_left_comm end))
(suppose i₁ : ¬ list.count x l₁ ≤ list.count x l₂, by_cases
(suppose i₂ : list.count y l₁ ≤ list.count y l₂,
begin unfold min_count, unfold min_count, rewrite [*if_neg i₁, *if_pos i₂], apply perm_app_left_comm end)
(suppose i₂ : ¬ list.count y l₁ ≤ list.count y l₂,
begin unfold min_count, unfold min_count, rewrite [*if_neg i₁, *if_neg i₂], apply perm_app_left_comm end)))
(λ s₁ s₂ s₃ p₁ p₂ ih₁ ih₂ l₁ l₂, perm.trans (ih₁ l₁ l₂) (ih₂ l₁ l₂))
private lemma perm_min_count {l₁ l₂ l₃ r₁ r₂ r₃ : list A} (p₁ : l₁ ~ r₁) (p₂ : l₂ ~ r₂) (p₃ : l₃ ~ r₃) : min_count l₁ l₂ l₃ ~ min_count r₁ r₂ r₃ :=
calc min_count l₁ l₂ l₃ ~ min_count r₁ r₂ l₃ : perm_min_count_left p₁ p₂
... ~ min_count r₁ r₂ r₃ : perm_min_count_right p₃
definition union (b₁ b₂ : bag A) : bag A :=
quot.lift_on₂ b₁ b₂ (λ l₁ l₂, ⟦max_count l₁ l₂ (union_list l₁ l₂)⟧)
(λ l₁ l₂ l₃ l₄ p₁ p₂, quot.sound (perm_max_count p₁ p₂ (perm_union_list p₁ p₂)))
infix := union
definition inter (b₁ b₂ : bag A) : bag A :=
quot.lift_on₂ b₁ b₂ (λ l₁ l₂, ⟦min_count l₁ l₂ (union_list l₁ l₂)⟧)
(λ l₁ l₂ l₃ l₄ p₁ p₂, quot.sound (perm_min_count p₁ p₂ (perm_union_list p₁ p₂)))
infix ∩ := inter
lemma count_union (a : A) (b₁ b₂ : bag A) : count a (b₁ b₂) = max (count a b₁) (count a b₂) :=
quot.induction_on₂ b₁ b₂ (λ l₁ l₂, by_cases
(suppose a ∈ union_list l₁ l₂, !max_count_eq this !nodup_union_list)
(suppose ¬ a ∈ union_list l₁ l₂,
assert ¬ a ∈ l₁, from not_mem_of_not_mem_union_list_left `¬ a ∈ union_list l₁ l₂`,
assert ¬ a ∈ l₂, from not_mem_of_not_mem_union_list_right `¬ a ∈ union_list l₁ l₂`,
assert n : ¬ a ∈ max_count l₁ l₂ (union_list l₁ l₂), from not_mem_max_count_of_not_mem l₁ l₂ `¬ a ∈ union_list l₁ l₂`,
begin
unfold [union, count],
rewrite [count_eq_zero_of_not_mem `¬ a ∈ l₁`, count_eq_zero_of_not_mem `¬ a ∈ l₂`, max_self],
rewrite [count_eq_zero_of_not_mem n]
end))
lemma count_inter (a : A) (b₁ b₂ : bag A) : count a (b₁ ∩ b₂) = min (count a b₁) (count a b₂) :=
quot.induction_on₂ b₁ b₂ (λ l₁ l₂, by_cases
(suppose a ∈ union_list l₁ l₂, !min_count_eq this !nodup_union_list)
(suppose ¬ a ∈ union_list l₁ l₂,
assert ¬ a ∈ l₁, from not_mem_of_not_mem_union_list_left `¬ a ∈ union_list l₁ l₂`,
assert ¬ a ∈ l₂, from not_mem_of_not_mem_union_list_right `¬ a ∈ union_list l₁ l₂`,
assert n : ¬ a ∈ min_count l₁ l₂ (union_list l₁ l₂), from not_mem_min_count_of_not_mem l₁ l₂ `¬ a ∈ union_list l₁ l₂`,
begin
unfold [inter, count],
rewrite [count_eq_zero_of_not_mem `¬ a ∈ l₁`, count_eq_zero_of_not_mem `¬ a ∈ l₂`, min_self],
rewrite [count_eq_zero_of_not_mem n]
end))
lemma union.comm (b₁ b₂ : bag A) : b₁ b₂ = b₂ b₁ :=
bag.ext (λ a, by rewrite [*count_union, max.comm])
lemma union.assoc (b₁ b₂ b₃ : bag A) : (b₁ b₂) b₃ = b₁ (b₂ b₃) :=
bag.ext (λ a, by rewrite [*count_union, max.assoc])
theorem union.left_comm (s₁ s₂ s₃ : bag A) : s₁ (s₂ s₃) = s₂ (s₁ s₃) :=
!left_comm union.comm union.assoc s₁ s₂ s₃
lemma union_self (b : bag A) : b b = b :=
bag.ext (λ a, by rewrite [*count_union, max_self])
lemma union_empty (b : bag A) : b empty = b :=
bag.ext (λ a, by rewrite [*count_union, count_empty, max_zero])
lemma empty_union (b : bag A) : empty b = b :=
calc empty b = b empty : union.comm
... = b : union_empty
lemma inter.comm (b₁ b₂ : bag A) : b₁ ∩ b₂ = b₂ ∩ b₁ :=
bag.ext (λ a, by rewrite [*count_inter, min.comm])
lemma inter.assoc (b₁ b₂ b₃ : bag A) : (b₁ ∩ b₂) ∩ b₃ = b₁ ∩ (b₂ ∩ b₃) :=
bag.ext (λ a, by rewrite [*count_inter, min.assoc])
theorem inter.left_comm (s₁ s₂ s₃ : bag A) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) :=
!left_comm inter.comm inter.assoc s₁ s₂ s₃
lemma inter_self (b : bag A) : b ∩ b = b :=
bag.ext (λ a, by rewrite [*count_inter, min_self])
lemma inter_empty (b : bag A) : b ∩ empty = empty :=
bag.ext (λ a, by rewrite [*count_inter, count_empty, min_zero])
lemma empty_inter (b : bag A) : empty ∩ b = empty :=
calc empty ∩ b = b ∩ empty : inter.comm
... = empty : inter_empty
lemma append_union_inter (b₁ b₂ : bag A) : (b₁ b₂) ++ (b₁ ∩ b₂) = b₁ ++ b₂ :=
bag.ext (λ a, begin
rewrite [*count_append, count_inter, count_union],
apply (or.elim (lt_or_ge (count a b₁) (count a b₂))),
{ intro H, rewrite [min_eq_left_of_lt H, max_eq_right_of_lt H, add.comm] },
{ intro H, rewrite [min_eq_right H, max_eq_left H, add.comm] }
end)
lemma inter.left_distrib (b₁ b₂ b₃ : bag A) : b₁ ∩ (b₂ b₃) = (b₁ ∩ b₂) (b₁ ∩ b₃) :=
bag.ext (λ a, begin
rewrite [*count_inter, *count_union, *count_inter],
apply (@by_cases (count a b₁ ≤ count a b₂)),
{ intro H₁₂, apply (@by_cases (count a b₂ ≤ count a b₃)),
{ intro H₂₃,
have H₁₃ : count a b₁ ≤ count a b₃, from le.trans H₁₂ H₂₃,
rewrite [max_eq_right H₂₃, min_eq_left H₁₂, min_eq_left H₁₃, max_self]},
{ intro H₂₃,
rewrite [min_eq_left H₁₂, max.comm, max_eq_right_of_lt (lt_of_not_ge H₂₃) ],
apply (@by_cases (count a b₁ ≤ count a b₃)),
{ intro H₁₃, rewrite [min_eq_left H₁₃, max_self, min_eq_left H₁₂] },
{ intro H₁₃,
rewrite [min.comm (count a b₁) (count a b₃), min_eq_left_of_lt (lt_of_not_ge H₁₃),
min_eq_left H₁₂, max.comm, max_eq_right_of_lt (lt_of_not_ge H₁₃)]}}},
{ intro H₁₂, apply (@by_cases (count a b₂ ≤ count a b₃)),
{ intro H₂₃,
rewrite [max_eq_right H₂₃],
apply (@by_cases (count a b₁ ≤ count a b₃)),
{ intro H₁₃, rewrite [min_eq_left H₁₃, min.comm, min_eq_left_of_lt (lt_of_not_ge H₁₂), max_eq_right_of_lt (lt_of_not_ge H₁₂)] },
{ intro H₁₃, rewrite [min.comm, min_eq_left_of_lt (lt_of_not_ge H₁₃), min.comm, min_eq_left_of_lt (lt_of_not_ge H₁₂), max_eq_right H₂₃] } },
{ intro H₂₃,
have H₁₃ : count a b₁ > count a b₃, from lt.trans (lt_of_not_ge H₂₃) (lt_of_not_ge H₁₂),
rewrite [max.comm, max_eq_right_of_lt (lt_of_not_ge H₂₃), min.comm, min_eq_left_of_lt (lt_of_not_ge H₁₂)],
rewrite [min.comm, min_eq_left_of_lt H₁₃, max.comm, max_eq_right_of_lt (lt_of_not_ge H₂₃)] } }
end)
lemma inter.right_distrib (b₁ b₂ b₃ : bag A) : (b₁ b₂) ∩ b₃ = (b₁ ∩ b₃) (b₂ ∩ b₃) :=
calc (b₁ b₂) ∩ b₃ = b₃ ∩ (b₁ b₂) : inter.comm
... = (b₃ ∩ b₁) (b₃ ∩ b₂) : inter.left_distrib
... = (b₁ ∩ b₃) (b₃ ∩ b₂) : inter.comm
... = (b₁ ∩ b₃) (b₂ ∩ b₃) : inter.comm
end union_inter
section subbag
variable [decA : decidable_eq A]
include decA
definition subbag (b₁ b₂ : bag A) := ∀ a, count a b₁ ≤ count a b₂
infix ⊆ := subbag
lemma subbag.refl (b : bag A) : b ⊆ b :=
take a, !le.refl
lemma subbag.trans {b₁ b₂ b₃ : bag A} : b₁ ⊆ b₂ → b₂ ⊆ b₃ → b₁ ⊆ b₃ :=
assume h₁ h₂, take a, le.trans (h₁ a) (h₂ a)
lemma subbag.antisymm {b₁ b₂ : bag A} : b₁ ⊆ b₂ → b₂ ⊆ b₁ → b₁ = b₂ :=
assume h₁ h₂, bag.ext (take a, le.antisymm (h₁ a) (h₂ a))
lemma count_le_of_subbag {b₁ b₂ : bag A} : b₁ ⊆ b₂ → ∀ a, count a b₁ ≤ count a b₂ :=
assume h, h
lemma subbag.intro {b₁ b₂ : bag A} : (∀ a, count a b₁ ≤ count a b₂) → b₁ ⊆ b₂ :=
assume h, h
lemma empty_subbag (b : bag A) : empty ⊆ b :=
subbag.intro (take a, !zero_le)
lemma eq_empty_of_subbag_empty {b : bag A} : b ⊆ empty → b = empty :=
assume h, subbag.antisymm h (empty_subbag b)
lemma union_subbag_of_subbag_of_subbag {b₁ b₂ b₃ : bag A} : b₁ ⊆ b₃ → b₂ ⊆ b₃ → b₁ b₂ ⊆ b₃ :=
assume h₁ h₂, subbag.intro (λ a, calc
count a (b₁ b₂) = max (count a b₁) (count a b₂) : by rewrite count_union
... ≤ count a b₃ : max_le (h₁ a) (h₂ a))
lemma subbag_inter_of_subbag_of_subbag {b₁ b₂ b₃ : bag A} : b₁ ⊆ b₂ → b₁ ⊆ b₃ → b₁ ⊆ b₂ ∩ b₃ :=
assume h₁ h₂, subbag.intro (λ a, calc
count a b₁ ≤ min (count a b₂) (count a b₃) : le_min (h₁ a) (h₂ a)
... = count a (b₂ ∩ b₃) : by rewrite count_inter)
lemma subbag_union_left (b₁ b₂ : bag A) : b₁ ⊆ b₁ b₂ :=
subbag.intro (take a, by rewrite [count_union]; apply le_max_left)
lemma subbag_union_right (b₁ b₂ : bag A) : b₂ ⊆ b₁ b₂ :=
subbag.intro (take a, by rewrite [count_union]; apply le_max_right)
lemma inter_subbag_left (b₁ b₂ : bag A) : b₁ ∩ b₂ ⊆ b₁ :=
subbag.intro (take a, by rewrite [count_inter]; apply min_le_left)
lemma inter_subbag_right (b₁ b₂ : bag A) : b₁ ∩ b₂ ⊆ b₂ :=
subbag.intro (take a, by rewrite [count_inter]; apply min_le_right)
lemma subbag_append_left (b₁ b₂ : bag A) : b₁ ⊆ b₁ ++ b₂ :=
subbag.intro (take a, by rewrite [count_append]; apply le_add_right)
lemma subbag_append_right (b₁ b₂ : bag A) : b₂ ⊆ b₁ ++ b₂ :=
subbag.intro (take a, by rewrite [count_append]; apply le_add_left)
lemma inter_subbag_union (b₁ b₂ : bag A) : b₁ ∩ b₂ ⊆ b₁ b₂ :=
subbag.trans (inter_subbag_left b₁ b₂) (subbag_union_left b₁ b₂)
open decidable
lemma union_subbag_append (b₁ b₂ : bag A) : b₁ b₂ ⊆ b₁ ++ b₂ :=
subbag.intro (take a, begin
rewrite [count_append, count_union],
exact (or.elim !lt_or_ge)
(suppose count a b₁ < count a b₂, by rewrite [max_eq_right_of_lt this]; apply le_add_left)
(suppose count a b₁ ≥ count a b₂, by rewrite [max_eq_left this]; apply le_add_right)
end)
lemma subbag_insert (a : A) (b : bag A) : b ⊆ insert a b :=
subbag.intro (take x, by_cases
(suppose x = a, by rewrite [this, count_insert]; apply le_succ)
(suppose x ≠ a, by rewrite [count_insert_of_ne this]))
lemma mem_of_subbag_of_mem {a : A} {b₁ b₂ : bag A} : b₁ ⊆ b₂ → a ∈ b₁ → a ∈ b₂ :=
assume h₁ h₂,
have count a b₁ ≤ count a b₂, from count_le_of_subbag h₁ a,
have count a b₁ > 0, from h₂,
show count a b₂ > 0, from lt_of_lt_of_le `0 < count a b₁` `count a b₁ ≤ count a b₂`
lemma extract_subbag (a : A) (b : bag A) : extract a b ⊆ b :=
subbag.intro (take x, by_cases
(suppose x = a, by rewrite [this, count_extract]; apply zero_le)
(suppose x ≠ a, by rewrite [count_extract_of_ne this]))
open bool
private definition subcount : list A → list A → bool
| [] l₂ := tt
| (a::l₁) l₂ := if list.count a (a::l₁) ≤ list.count a l₂ then subcount l₁ l₂ else ff
private lemma all_of_subcount_eq_tt : ∀ {l₁ l₂ : list A}, subcount l₁ l₂ = tt → ∀ a, list.count a l₁ ≤ list.count a l₂
| [] l₂ h := take x, !zero_le
| (a::l₁) l₂ h := take x,
have subcount l₁ l₂ = tt, from by_contradiction (suppose subcount l₁ l₂ ≠ tt,
assert subcount l₁ l₂ = ff, from eq_ff_of_ne_tt this,
begin unfold subcount at h, rewrite [this at h, if_t_t at h], contradiction end),
assert ih : ∀ a, list.count a l₁ ≤ list.count a l₂, from all_of_subcount_eq_tt this,
assert i : list.count a (a::l₁) ≤ list.count a l₂, from by_contradiction (suppose ¬ list.count a (a::l₁) ≤ list.count a l₂,
begin unfold subcount at h, rewrite [if_neg this at h], contradiction end),
by_cases
(suppose x = a, by rewrite this; apply i)
(suppose x ≠ a, by rewrite [list.count_cons_of_ne this]; apply ih)
private lemma ex_of_subcount_eq_ff : ∀ {l₁ l₂ : list A}, subcount l₁ l₂ = ff → ∃ a, ¬ list.count a l₁ ≤ list.count a l₂
| [] l₂ h := by contradiction
| (a::l₁) l₂ h := by_cases
(suppose i : list.count a (a::l₁) ≤ list.count a l₂,
have subcount l₁ l₂ = ff, from by_contradiction (suppose subcount l₁ l₂ ≠ ff,
assert subcount l₁ l₂ = tt, from eq_tt_of_ne_ff this,
begin
unfold subcount at h,
rewrite [if_pos i at h, this at h],
contradiction
end),
have ih : ∃ a, ¬ list.count a l₁ ≤ list.count a l₂, from ex_of_subcount_eq_ff this,
obtain w hw, from ih, by_cases
(suppose w = a, begin subst w, existsi a, rewrite list.count_cons_eq, apply not_lt_of_ge, apply le_of_lt (lt_of_not_ge hw) end)
(suppose w ≠ a, exists.intro w (by rewrite (list.count_cons_of_ne `w ≠ a`); exact hw)))
(suppose ¬ list.count a (a::l₁) ≤ list.count a l₂, exists.intro a this)
definition decidable_subbag [instance] (b₁ b₂ : bag A) : decidable (b₁ ⊆ b₂) :=
quot.rec_on_subsingleton₂ b₁ b₂ (λ l₁ l₂,
match subcount l₁ l₂ with
| tt := suppose subcount l₁ l₂ = tt, inl (all_of_subcount_eq_tt this)
| ff := suppose subcount l₁ l₂ = ff, inr (suppose h : (∀ a, list.count a l₁ ≤ list.count a l₂),
obtain w hw, from ex_of_subcount_eq_ff `subcount l₁ l₂ = ff`,
absurd (h w) hw)
end rfl)
end subbag
end bag