lean2/hott/homotopy/chain_complex.hlean
Floris van Doorn 9265094f96 feat(pointed): redefine pequiv
Now the underlying pointed function and pointed inverse are the functions which were put in definitionally
2017-06-14 21:28:31 -04:00

552 lines
22 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Chain complexes.
We define chain complexes in a general way as a sequence X of types indexes over an arbitrary type
N with a successor S. There are maps X (S n) → X n for n : N. We can vary N to have chain complexes
indexed by , , a finite type or something else, and for both and we can choose the maps to
go up or down. We also use the indexing × 3 for the LES of homotopy groups, because then it
computes better (see [LES_of_homotopy_groups]).
We have two separate notions of
chain complexes:
- type_chain_complex: sequence of types, where exactness is formulated using pure existence.
- chain_complex: sequence of sets, where exactness is formulated using mere existence.
-/
import types.int algebra.group_theory types.fin types.unit
open eq pointed int unit is_equiv equiv is_trunc trunc function algebra group sigma.ops
sum prod nat bool fin
structure succ_str : Type :=
(carrier : Type)
(succ : carrier → carrier)
attribute succ_str.carrier [coercion]
definition succ_str.S {X : succ_str} : X → X := succ_str.succ X
open succ_str
definition snat [reducible] [constructor] : succ_str := succ_str.mk nat.succ
definition snat' [reducible] [constructor] : succ_str := succ_str.mk nat.pred
definition sint [reducible] [constructor] : succ_str := succ_str.mk int.succ
definition sint' [reducible] [constructor] : succ_str := succ_str.mk int.pred
notation `+` := snat
notation `-` := snat'
notation `+` := sint
notation `-` := sint'
definition stratified_type [reducible] (N : succ_str) (n : ) : Type₀ := N × fin (succ n)
definition stratified_succ {N : succ_str} {n : } (x : stratified_type N n)
: stratified_type N n :=
(if val (pr2 x) = n then S (pr1 x) else pr1 x, cyclic_succ (pr2 x))
/- You might need to manually change the succ_str, to use predecessor as "successor" -/
definition stratified_pred (N : succ_str) {n : } (x : stratified_type N n)
: stratified_type N n :=
(if val (pr2 x) = 0 then S (pr1 x) else pr1 x, cyclic_pred (pr2 x))
definition stratified [reducible] [constructor] (N : succ_str) (n : ) : succ_str :=
succ_str.mk (stratified_type N n) stratified_succ
notation `+3` := stratified + 2
notation `-3` := stratified - 2
notation `+3` := stratified + 2
notation `-3` := stratified - 2
notation `+6` := stratified + 5
notation `-6` := stratified - 5
notation `+6` := stratified + 5
notation `-6` := stratified - 5
namespace succ_str
protected definition add [reducible] {N : succ_str} (n : N) (k : ) : N :=
iterate S k n
infix ` +' `:65 := succ_str.add
definition add_succ {N : succ_str} (n : N) (k : ) : n +' (k + 1) = (S n) +' k :=
by induction k with k p; reflexivity; exact ap S p
end succ_str
namespace chain_complex
export [notation] succ_str
/-
We define "type chain complexes" which are chain complexes without the
"set"-requirement. Exactness is formulated without propositional truncation.
-/
structure type_chain_complex (N : succ_str) : Type :=
(car : N → Type*)
(fn : Π(n : N), car (S n) →* car n)
(is_chain_complex : Π(n : N) (x : car (S (S n))), fn n (fn (S n) x) = pt)
section
variables {N : succ_str} (X : type_chain_complex N) (n : N)
definition tcc_to_car [unfold 2] [coercion] := @type_chain_complex.car
definition tcc_to_fn [unfold 2] : X (S n) →* X n := type_chain_complex.fn X n
definition tcc_is_chain_complex [unfold 2]
: Π(x : X (S (S n))), tcc_to_fn X n (tcc_to_fn X (S n) x) = pt :=
type_chain_complex.is_chain_complex X n
-- important: these notions are shifted by one! (this is to avoid transports)
definition is_exact_at_t [reducible] /- X n -/ : Type :=
Π(x : X (S n)), tcc_to_fn X n x = pt → fiber (tcc_to_fn X (S n)) x
definition is_exact_t [reducible] /- X -/ : Type :=
Π(n : N), is_exact_at_t X n
-- A chain complex on + can be trivially extended to a chain complex on +
definition type_chain_complex_from_left (X : type_chain_complex +)
: type_chain_complex + :=
type_chain_complex.mk (int.rec X (λn, punit))
begin
intro n, fconstructor,
{ induction n with n n,
{ exact tcc_to_fn X n},
{ esimp, intro x, exact star}},
{ induction n with n n,
{ apply respect_pt},
{ reflexivity}}
end
begin
intro n, induction n with n n,
{ exact tcc_is_chain_complex X n},
{ esimp, intro x, reflexivity}
end
definition is_exact_t_from_left {X : type_chain_complex +} {n : }
(H : is_exact_at_t X n)
: is_exact_at_t (type_chain_complex_from_left X) (of_nat n) :=
H
/-
Given a natural isomorphism between a chain complex and any other sequence,
we can give the other sequence the structure of a chain complex, which is exact at the
positions where the original sequence is.
-/
definition transfer_type_chain_complex [constructor] /- X -/
{Y : N → Type*} (g : Π{n : N}, Y (S n) →* Y n) (e : Π{n}, X n ≃* Y n)
(p : Π{n} (x : X (S n)), e (tcc_to_fn X n x) = g (e x)) : type_chain_complex N :=
type_chain_complex.mk Y @g
abstract begin
intro n, apply equiv_rect (equiv_of_pequiv e), intro x,
refine ap g (p x)⁻¹ ⬝ _,
refine (p _)⁻¹ ⬝ _,
refine ap e (tcc_is_chain_complex X n _) ⬝ _,
apply respect_pt
end end
theorem is_exact_at_t_transfer {X : type_chain_complex N} {Y : N → Type*}
{g : Π{n : N}, Y (S n) →* Y n} (e : Π{n}, X n ≃* Y n)
(p : Π{n} (x : X (S n)), e (tcc_to_fn X n x) = g (e x)) {n : N}
(H : is_exact_at_t X n) : is_exact_at_t (transfer_type_chain_complex X @g @e @p) n :=
begin
intro y q, esimp at *,
have H2 : tcc_to_fn X n (e⁻¹ᵉ* y) = pt,
begin
refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
refine ap _ q ⬝ _,
exact respect_pt e⁻¹ᵉ*
end,
cases (H _ H2) with x r,
refine fiber.mk (e x) _,
refine (p x)⁻¹ ⬝ _,
refine ap e r ⬝ _,
apply right_inv
end
/-
We want a theorem which states that if we have a chain complex, but with some
where the maps are composed by an equivalences, we want to remove this equivalence.
The following two theorems give sufficient conditions for when this is allowed.
We use this to transform the LES of homotopy groups where on the odd levels we have
maps -πₙ(...) into the LES of homotopy groups where we remove the minus signs (which
represents composition with path inversion).
-/
definition type_chain_complex_cancel_aut [constructor] /- X -/
(g : Π{n : N}, X (S n) →* X n) (e : Π{n}, X n ≃* X n)
(r : Π{n}, X n →* X n)
(p : Π{n : N} (x : X (S n)), g (e x) = tcc_to_fn X n x)
(pr : Π{n : N} (x : X (S n)), g x = r (g (e x))) : type_chain_complex N :=
type_chain_complex.mk X @g
abstract begin
have p' : Π{n : N} (x : X (S n)), g x = tcc_to_fn X n (e⁻¹ x),
from λn, homotopy_inv_of_homotopy_pre e _ _ p,
intro n x,
refine ap g !p' ⬝ !pr ⬝ _,
refine ap r !p ⬝ _,
refine ap r (tcc_is_chain_complex X n _) ⬝ _,
apply respect_pt
end end
theorem is_exact_at_t_cancel_aut {X : type_chain_complex N}
{g : Π{n : N}, X (S n) →* X n} {e : Π{n}, X n ≃* X n}
{r : Π{n}, X n →* X n} (l : Π{n}, X n →* X n)
(p : Π{n : N} (x : X (S n)), g (e x) = tcc_to_fn X n x)
(pr : Π{n : N} (x : X (S n)), g x = r (g (e x)))
(pl : Π{n : N} (x : X (S n)), g (l x) = e (g x))
(H : is_exact_at_t X n) : is_exact_at_t (type_chain_complex_cancel_aut X @g @e @r @p @pr) n :=
begin
intro y q, esimp at *,
have H2 : tcc_to_fn X n (e⁻¹ y) = pt,
from (homotopy_inv_of_homotopy_pre e _ _ p _)⁻¹ ⬝ q,
cases (H _ H2) with x s,
refine fiber.mk (l (e x)) _,
refine !pl ⬝ _,
refine ap e (!p ⬝ s) ⬝ _,
apply right_inv
end
/-
A more general transfer theorem.
Here the base type can also change by an equivalence.
-/
definition transfer_type_chain_complex2 [constructor] {M : succ_str} {Y : M → Type*}
(f : M ≃ N) (c : Π(m : M), S (f m) = f (S m))
(g : Π{m : M}, Y (S m) →* Y m) (e : Π{m}, X (f m) ≃* Y m)
(p : Π{m} (x : X (S (f m))), e (tcc_to_fn X (f m) x) = g (e (cast (ap (λx, X x) (c m)) x)))
: type_chain_complex M :=
type_chain_complex.mk Y @g
begin
intro m,
apply equiv_rect (equiv_of_pequiv e),
apply equiv_rect (equiv_of_eq (ap (λx, X x) (c (S m)))), esimp,
apply equiv_rect (equiv_of_eq (ap (λx, X (S x)) (c m))), esimp,
intro x, refine ap g (p _)⁻¹ ⬝ _,
refine ap g (ap e (fn_cast_eq_cast_fn (c m) (tcc_to_fn X) x)) ⬝ _,
refine (p _)⁻¹ ⬝ _,
refine ap e (tcc_is_chain_complex X (f m) _) ⬝ _,
apply respect_pt
end
definition is_exact_at_t_transfer2 {X : type_chain_complex N} {M : succ_str} {Y : M → Type*}
(f : M ≃ N) (c : Π(m : M), S (f m) = f (S m))
(g : Π{m : M}, Y (S m) →* Y m) (e : Π{m}, X (f m) ≃* Y m)
(p : Π{m} (x : X (S (f m))), e (tcc_to_fn X (f m) x) = g (e (cast (ap (λx, X x) (c m)) x)))
{m : M} (H : is_exact_at_t X (f m))
: is_exact_at_t (transfer_type_chain_complex2 X f c @g @e @p) m :=
begin
intro y q, esimp at *,
have H2 : tcc_to_fn X (f m) ((equiv_of_eq (ap (λx, X x) (c m)))⁻¹ᵉ (e⁻¹ y)) = pt,
begin
refine _ ⬝ ap e⁻¹ᵉ* q ⬝ (respect_pt (e⁻¹ᵉ*)), apply @eq_inv_of_eq _ _ e, clear q, revert y,
apply inv_homotopy_of_homotopy_pre e,
apply inv_homotopy_of_homotopy_pre, apply p
end,
induction (H _ H2) with x r,
refine fiber.mk (e (cast (ap (λx, X x) (c (S m))) (cast (ap (λx, X (S x)) (c m)) x))) _,
refine (p _)⁻¹ ⬝ _,
refine ap e (fn_cast_eq_cast_fn (c m) (tcc_to_fn X) x) ⬝ _,
refine ap (λx, e (cast _ x)) r ⬝ _,
esimp [equiv.symm], rewrite [-ap_inv],
refine ap e !cast_cast_inv ⬝ _,
apply right_inv
end
end
/- actual (set) chain complexes -/
structure chain_complex (N : succ_str) : Type :=
(car : N → Set*)
(fn : Π(n : N), car (S n) →* car n)
(is_chain_complex : Π(n : N) (x : car (S (S n))), fn n (fn (S n) x) = pt)
section
variables {N : succ_str} (X : chain_complex N) (n : N)
definition cc_to_car [unfold 2] [coercion] := @chain_complex.car
definition cc_to_fn [unfold 2] : X (S n) →* X n := @chain_complex.fn N X n
definition cc_is_chain_complex [unfold 2]
: Π(x : X (S (S n))), cc_to_fn X n (cc_to_fn X (S n) x) = pt :=
@chain_complex.is_chain_complex N X n
-- important: these notions are shifted by one! (this is to avoid transports)
definition is_exact_at [reducible] /- X n -/ : Type :=
Π(x : X (S n)), cc_to_fn X n x = pt → image (cc_to_fn X (S n)) x
definition is_exact [reducible] /- X -/ : Type := Π(n : N), is_exact_at X n
definition chain_complex_from_left (X : chain_complex +) : chain_complex + :=
chain_complex.mk (int.rec X (λn, punit))
begin
intro n, fconstructor,
{ induction n with n n,
{ exact cc_to_fn X n},
{ esimp, intro x, exact star}},
{ induction n with n n,
{ apply respect_pt},
{ reflexivity}}
end
begin
intro n, induction n with n n,
{ exact cc_is_chain_complex X n},
{ esimp, intro x, reflexivity}
end
definition is_exact_from_left {X : chain_complex +} {n : } (H : is_exact_at X n)
: is_exact_at (chain_complex_from_left X) (of_nat n) :=
H
definition transfer_chain_complex [constructor] {Y : N → Set*}
(g : Π{n : N}, Y (S n) →* Y n) (e : Π{n}, X n ≃* Y n)
(p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (e x)) : chain_complex N :=
chain_complex.mk Y @g
abstract begin
intro n, apply equiv_rect (equiv_of_pequiv e), intro x,
refine ap g (p x)⁻¹ ⬝ _,
refine (p _)⁻¹ ⬝ _,
refine ap e (cc_is_chain_complex X n _) ⬝ _,
apply respect_pt
end end
theorem is_exact_at_transfer {X : chain_complex N} {Y : N → Set*}
(g : Π{n : N}, Y (S n) →* Y n) (e : Π{n}, X n ≃* Y n)
(p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (e x))
{n : N} (H : is_exact_at X n) : is_exact_at (transfer_chain_complex X @g @e @p) n :=
begin
intro y q, esimp at *,
have H2 : cc_to_fn X n (e⁻¹ᵉ* y) = pt,
begin
refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
refine ap _ q ⬝ _,
exact respect_pt e⁻¹ᵉ*
end,
induction (H _ H2) with x r,
refine image.mk (e x) _,
refine (p x)⁻¹ ⬝ _,
refine ap e r ⬝ _,
apply right_inv
end
/- A type chain complex can be set-truncated to a chain complex -/
definition trunc_chain_complex [constructor] (X : type_chain_complex N)
: chain_complex N :=
chain_complex.mk
(λn, ptrunc 0 (X n))
(λn, ptrunc_functor 0 (tcc_to_fn X n))
begin
intro n x, esimp at *,
refine @trunc.rec _ _ _ (λH, !is_trunc_eq) _ x,
clear x, intro x, esimp,
exact ap tr (tcc_is_chain_complex X n x)
end
definition is_exact_at_trunc (X : type_chain_complex N) {n : N}
(H : is_exact_at_t X n) : is_exact_at (trunc_chain_complex X) n :=
begin
intro x p, esimp at *,
induction x with x, esimp at *,
note q := !tr_eq_tr_equiv p,
induction q with q,
induction H x q with y r,
refine image.mk (tr y) _,
esimp, exact ap tr r
end
definition transfer_chain_complex2 [constructor] {M : succ_str} {Y : M → Set*}
(f : N ≃ M) (c : Π(n : N), f (S n) = S (f n))
(g : Π{m : M}, Y (S m) →* Y m) (e : Π{n}, X n ≃* Y (f n))
(p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (c n ▸ e x)) : chain_complex M :=
chain_complex.mk Y @g
begin
refine equiv_rect f _ _, intro n,
have H : Π (x : Y (f (S (S n)))), g (c n ▸ g (c (S n) ▸ x)) = pt,
begin
apply equiv_rect (equiv_of_pequiv e), intro x,
refine ap (λx, g (c n ▸ x)) (@p (S n) x)⁻¹ᵖ ⬝ _,
refine (p _)⁻¹ ⬝ _,
refine ap e (cc_is_chain_complex X n _) ⬝ _,
apply respect_pt
end,
refine pi.pi_functor _ _ H,
{ intro x, exact (c (S n))⁻¹ ▸ (c n)⁻¹ ▸ x}, -- with implicit arguments, this is:
-- transport (λx, Y x) (c (S n))⁻¹ (transport (λx, Y (S x)) (c n)⁻¹ x)
{ intro x, intro p, refine _ ⬝ p, rewrite [tr_inv_tr, fn_tr_eq_tr_fn (c n)⁻¹ @g, tr_inv_tr]}
end
definition is_exact_at_transfer2 {X : chain_complex N} {M : succ_str} {Y : M → Set*}
(f : N ≃ M) (c : Π(n : N), f (S n) = S (f n))
(g : Π{m : M}, Y (S m) →* Y m) (e : Π{n}, X n ≃* Y (f n))
(p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (c n ▸ e x))
{n : N} (H : is_exact_at X n) : is_exact_at (transfer_chain_complex2 X f c @g @e @p) (f n) :=
begin
intro y q, esimp at *,
have H2 : cc_to_fn X n (e⁻¹ᵉ* ((c n)⁻¹ ▸ y)) = pt,
begin
refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
rewrite [tr_inv_tr, q],
exact respect_pt e⁻¹ᵉ*
end,
induction (H _ H2) with x r,
refine image.mk (c n ▸ c (S n) ▸ e x) _,
rewrite [fn_tr_eq_tr_fn (c n) @g],
refine ap (λx, c n ▸ x) (p x)⁻¹ ⬝ _,
refine ap (λx, c n ▸ e x) r ⬝ _,
refine ap (λx, c n ▸ x) !right_inv ⬝ _,
apply tr_inv_tr,
end
/-
This is a start of a development of chain complexes consisting only on groups.
This might be useful to have in stable algebraic topology, but in the unstable case it's less
useful, since the smallest terms usually don't have a group structure.
We don't use it yet, so it's commented out for now
-/
-- structure group_chain_complex : Type :=
-- (car : N → Group)
-- (fn : Π(n : N), car (S n) →g car n)
-- (is_chain_complex : Π{n : N} (x : car ((S n) + 1)), fn n (fn (S n) x) = 1)
-- structure group_chain_complex : Type := -- chain complex on the naturals with maps going down
-- (car : N → Group)
-- (fn : Π(n : N), car (S n) →g car n)
-- (is_chain_complex : Π{n : N} (x : car ((S n) + 1)), fn n (fn (S n) x) = 1)
-- structure right_group_chain_complex : Type := -- chain complex on the naturals with maps going up
-- (car : N → Group)
-- (fn : Π(n : N), car n →g car (S n))
-- (is_chain_complex : Π{n : N} (x : car n), fn (S n) (fn n x) = 1)
-- definition gcc_to_car [unfold 1] [coercion] := @group_chain_complex.car
-- definition gcc_to_fn [unfold 1] := @group_chain_complex.fn
-- definition gcc_is_chain_complex [unfold 1] := @group_chain_complex.is_chain_complex
-- definition lgcc_to_car [unfold 1] [coercion] := @left_group_chain_complex.car
-- definition lgcc_to_fn [unfold 1] := @left_group_chain_complex.fn
-- definition lgcc_is_chain_complex [unfold 1] := @left_group_chain_complex.is_chain_complex
-- definition rgcc_to_car [unfold 1] [coercion] := @right_group_chain_complex.car
-- definition rgcc_to_fn [unfold 1] := @right_group_chain_complex.fn
-- definition rgcc_is_chain_complex [unfold 1] := @right_group_chain_complex.is_chain_complex
-- -- important: these notions are shifted by one! (this is to avoid transports)
-- definition is_exact_at_g [reducible] (X : group_chain_complex) (n : N) : Type :=
-- Π(x : X (S n)), gcc_to_fn X n x = 1 → image (gcc_to_fn X (S n)) x
-- definition is_exact_at_lg [reducible] (X : left_group_chain_complex) (n : N) : Type :=
-- Π(x : X (S n)), lgcc_to_fn X n x = 1 → image (lgcc_to_fn X (S n)) x
-- definition is_exact_at_rg [reducible] (X : right_group_chain_complex) (n : N) : Type :=
-- Π(x : X (S n)), rgcc_to_fn X (S n) x = 1 → image (rgcc_to_fn X n) x
-- definition is_exact_g [reducible] (X : group_chain_complex) : Type :=
-- Π(n : N), is_exact_at_g X n
-- definition is_exact_lg [reducible] (X : left_group_chain_complex) : Type :=
-- Π(n : N), is_exact_at_lg X n
-- definition is_exact_rg [reducible] (X : right_group_chain_complex) : Type :=
-- Π(n : N), is_exact_at_rg X n
-- definition group_chain_complex_from_left (X : left_group_chain_complex) : group_chain_complex :=
-- group_chain_complex.mk (int.rec X (λn, G0))
-- begin
-- intro n, fconstructor,
-- { induction n with n n,
-- { exact @lgcc_to_fn X n},
-- { esimp, intro x, exact star}},
-- { induction n with n n,
-- { apply respect_mul},
-- { intro g h, reflexivity}}
-- end
-- begin
-- intro n, induction n with n n,
-- { exact lgcc_is_chain_complex X},
-- { esimp, intro x, reflexivity}
-- end
-- definition is_exact_g_from_left {X : left_group_chain_complex} {n : N} (H : is_exact_at_lg X n)
-- : is_exact_at_g (group_chain_complex_from_left X) n :=
-- H
-- definition transfer_left_group_chain_complex [constructor] (X : left_group_chain_complex)
-- {Y : N → Group} (g : Π{n : N}, Y (S n) →g Y n) (e : Π{n}, X n ≃* Y n)
-- (p : Π{n} (x : X (S n)), e (lgcc_to_fn X n x) = g (e x)) : left_group_chain_complex :=
-- left_group_chain_complex.mk Y @g
-- begin
-- intro n, apply equiv_rect (pequiv_of_equiv e), intro x,
-- refine ap g (p x)⁻¹ ⬝ _,
-- refine (p _)⁻¹ ⬝ _,
-- refine ap e (lgcc_is_chain_complex X _) ⬝ _,
-- exact respect_pt
-- end
-- definition is_exact_at_t_transfer {X : left_group_chain_complex} {Y : N → Type*}
-- {g : Π{n : N}, Y (S n) →* Y n} (e : Π{n}, X n ≃* Y n)
-- (p : Π{n} (x : X (S n)), e (lgcc_to_fn X n x) = g (e x)) {n : N}
-- (H : is_exact_at_lg X n) : is_exact_at_lg (transfer_left_group_chain_complex X @g @e @p) n :=
-- begin
-- intro y q, esimp at *,
-- have H2 : lgcc_to_fn X n (e⁻¹ᵉ* y) = pt,
-- begin
-- refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
-- refine ap _ q ⬝ _,
-- exact respect_pt e⁻¹ᵉ*
-- end,
-- cases (H _ H2) with x r,
-- refine image.mk (e x) _,
-- refine (p x)⁻¹ ⬝ _,
-- refine ap e r ⬝ _,
-- apply right_inv
-- end
/-
The following theorems state that in a chain complex, if certain types are contractible, and
the chain complex is exact at the right spots, a map in the chain complex is an
embedding/surjection/equivalence. For the first and third we also need to assume that
the map is a group homomorphism (and hence that the two types around it are groups).
-/
definition is_embedding_of_trivial (X : chain_complex N) {n : N}
(H : is_exact_at X n) [HX : is_contr (X (S (S n)))]
[pgroup (X n)] [pgroup (X (S n))] [is_mul_hom (cc_to_fn X n)]
: is_embedding (cc_to_fn X n) :=
begin
apply is_embedding_of_is_mul_hom,
intro g p,
induction H g p with x q,
have r : pt = x, from !is_prop.elim,
induction r,
refine q⁻¹ ⬝ _,
apply respect_pt
end
definition is_surjective_of_trivial (X : chain_complex N) {n : N}
(H : is_exact_at X n) [HX : is_contr (X n)] : is_surjective (cc_to_fn X (S n)) :=
begin
intro g,
refine trunc.elim _ (H g !is_prop.elim),
apply tr
end
definition is_equiv_of_trivial (X : chain_complex N) {n : N}
(H1 : is_exact_at X n) (H2 : is_exact_at X (S n))
[HX1 : is_contr (X n)] [HX2 : is_contr (X (S (S (S n))))]
[pgroup (X (S n))] [pgroup (X (S (S n)))] [is_mul_hom (cc_to_fn X (S n))]
: is_equiv (cc_to_fn X (S n)) :=
begin
apply is_equiv_of_is_surjective_of_is_embedding,
{ apply is_embedding_of_trivial X, apply H2},
{ apply is_surjective_of_trivial X, apply H1},
end
definition is_contr_of_is_embedding_of_is_surjective {N : succ_str} (X : chain_complex N) {n : N}
(H : is_exact_at X (S n)) [is_embedding (cc_to_fn X n)]
[H2 : is_surjective (cc_to_fn X (S (S (S n))))] : is_contr (X (S (S n))) :=
begin
apply is_contr.mk pt, intro x,
have p : cc_to_fn X n (cc_to_fn X (S n) x) = cc_to_fn X n pt,
from !cc_is_chain_complex ⬝ !respect_pt⁻¹,
have q : cc_to_fn X (S n) x = pt, from is_injective_of_is_embedding p,
induction H x q with y r,
induction H2 y with z s,
exact (cc_is_chain_complex X _ z)⁻¹ ⬝ ap (cc_to_fn X _) s ⬝ r
end
end
end chain_complex