lean2/hott/types/sum.hlean
Floris van Doorn 7e52c49dce feat(hott): many changes is the HoTT library
Prove that 'is_left_adjoint F' is a mere proposition, although this proof is commented out because it takes ~10 seconds
2015-09-01 15:17:46 -07:00

262 lines
9.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Theorems about sums/coproducts/disjoint unions
-/
import .pi
open lift eq is_equiv equiv equiv.ops prod prod.ops is_trunc sigma bool
namespace sum
universe variables u v u' v'
variables {A : Type.{u}} {B : Type.{v}} (z z' : A + B) {P : A → Type.{u'}} {Q : A → Type.{v'}}
protected definition eta : sum.rec inl inr z = z :=
by induction z; all_goals reflexivity
protected definition code [unfold 3 4] : A + B → A + B → Type.{max u v}
| code (inl a) (inl a') := lift (a = a')
| code (inr b) (inr b') := lift (b = b')
| code _ _ := lift empty
protected definition decode [unfold 3 4] : Π(z z' : A + B), sum.code z z' → z = z'
| decode (inl a) (inl a') := λc, ap inl (down c)
| decode (inl a) (inr b') := λc, empty.elim (down c) _
| decode (inr b) (inl a') := λc, empty.elim (down c) _
| decode (inr b) (inr b') := λc, ap inr (down c)
variables {z z'}
protected definition encode [unfold 3 4 5] (p : z = z') : sum.code z z' :=
by induction p; induction z; all_goals exact up idp
variables (z z')
definition sum_eq_equiv [constructor] : (z = z') ≃ sum.code z z' :=
equiv.MK sum.encode
!sum.decode
abstract begin
intro c, induction z with a b, all_goals induction z' with a' b',
all_goals (esimp at *; induction c with c),
all_goals induction c, -- c either has type empty or a path
all_goals reflexivity
end end
abstract begin
intro p, induction p, induction z, all_goals reflexivity
end end
section
variables {a a' : A} {b b' : B}
definition eq_of_inl_eq_inl [unfold 5] (p : inl a = inl a' :> A + B) : a = a' :=
down (sum.encode p)
definition eq_of_inr_eq_inr [unfold 5] (p : inr b = inr b' :> A + B) : b = b' :=
down (sum.encode p)
definition empty_of_inl_eq_inr (p : inl a = inr b) : empty := down (sum.encode p)
definition empty_of_inr_eq_inl (p : inr b = inl a) : empty := down (sum.encode p)
/- Transport -/
definition sum_transport (p : a = a') (z : P a + Q a)
: p ▸ z = sum.rec (λa, inl (p ▸ a)) (λb, inr (p ▸ b)) z :=
by induction p; induction z; all_goals reflexivity
/- Pathovers -/
definition etao (p : a = a') (z : P a + Q a)
: z =[p] sum.rec (λa, inl (p ▸ a)) (λb, inr (p ▸ b)) z :=
by induction p; induction z; all_goals constructor
protected definition codeo (p : a = a') : P a + Q a → P a' + Q a' → Type.{max u' v'}
| codeo (inl x) (inl x') := lift.{u' v'} (x =[p] x')
| codeo (inr y) (inr y') := lift.{v' u'} (y =[p] y')
| codeo _ _ := lift empty
protected definition decodeo (p : a = a') : Π(z : P a + Q a) (z' : P a' + Q a'),
sum.codeo p z z' → z =[p] z'
| decodeo (inl x) (inl x') := λc, apo (λa, inl) (down c)
| decodeo (inl x) (inr y') := λc, empty.elim (down c) _
| decodeo (inr y) (inl x') := λc, empty.elim (down c) _
| decodeo (inr y) (inr y') := λc, apo (λa, inr) (down c)
variables {z z'}
protected definition encodeo {p : a = a'} {z : P a + Q a} {z' : P a' + Q a'} (q : z =[p] z')
: sum.codeo p z z' :=
by induction q; induction z; all_goals exact up idpo
variables (z z')
definition sum_pathover_equiv [constructor] (p : a = a') (z : P a + Q a) (z' : P a' + Q a')
: (z =[p] z') ≃ sum.codeo p z z' :=
equiv.MK sum.encodeo
!sum.decodeo
abstract begin
intro c, induction z with a b, all_goals induction z' with a' b',
all_goals (esimp at *; induction c with c),
all_goals induction c, -- c either has type empty or a pathover
all_goals reflexivity
end end
abstract begin
intro q, induction q, induction z, all_goals reflexivity
end end
end
/- Functorial action -/
variables {A' B' : Type} (f : A → A') (g : B → B')
definition sum_functor [unfold 7] : A + B → A' + B'
| sum_functor (inl a) := inl (f a)
| sum_functor (inr b) := inr (g b)
/- Equivalences -/
definition is_equiv_sum_functor [constructor] [Hf : is_equiv f] [Hg : is_equiv g]
: is_equiv (sum_functor f g) :=
adjointify (sum_functor f g)
(sum_functor f⁻¹ g⁻¹)
abstract begin
intro z, induction z,
all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv)
end end
abstract begin
intro z, induction z,
all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv)
end end
definition sum_equiv_sum_of_is_equiv [constructor] [Hf : is_equiv f] [Hg : is_equiv g]
: A + B ≃ A' + B' :=
equiv.mk _ (is_equiv_sum_functor f g)
definition sum_equiv_sum [constructor] (f : A ≃ A') (g : B ≃ B') : A + B ≃ A' + B' :=
equiv.mk _ (is_equiv_sum_functor f g)
definition sum_equiv_sum_left [constructor] (g : B ≃ B') : A + B ≃ A + B' :=
sum_equiv_sum equiv.refl g
definition sum_equiv_sum_right [constructor] (f : A ≃ A') : A + B ≃ A' + B :=
sum_equiv_sum f equiv.refl
definition flip [unfold 3] : A + B → B + A
| flip (inl a) := inr a
| flip (inr b) := inl b
definition sum_comm_equiv [constructor] (A B : Type) : A + B ≃ B + A :=
begin
fapply equiv.MK,
exact flip,
exact flip,
all_goals (intro z; induction z; all_goals reflexivity)
end
definition sum_assoc_equiv (A B C : Type) : A + (B + C) ≃ (A + B) + C :=
begin
fapply equiv.MK,
all_goals try (intro z; induction z with u v;
all_goals try induction u; all_goals try induction v),
all_goals try (repeat append (append (apply inl) (apply inr)) assumption; now),
all_goals reflexivity
end
definition sum_empty_equiv [constructor] (A : Type) : A + empty ≃ A :=
begin
fapply equiv.MK,
{ intro z, induction z, assumption, contradiction},
{ exact inl},
{ intro a, reflexivity},
{ intro z, induction z, reflexivity, contradiction}
end
definition empty_sum_equiv (A : Type) : empty + A ≃ A :=
!sum_comm_equiv ⬝e !sum_empty_equiv
/- universal property -/
definition sum_rec_unc {P : A + B → Type} (fg : (Πa, P (inl a)) × (Πb, P (inr b))) : Πz, P z :=
sum.rec fg.1 fg.2
definition is_equiv_sum_rec [constructor] (P : A + B → Type)
: is_equiv (sum_rec_unc : (Πa, P (inl a)) × (Πb, P (inr b)) → Πz, P z) :=
begin
apply adjointify sum_rec_unc (λf, (λa, f (inl a), λb, f (inr b))),
intro f, apply eq_of_homotopy, intro z, focus (induction z; all_goals reflexivity),
intro h, induction h with f g, reflexivity
end
definition equiv_sum_rec [constructor] (P : A + B → Type)
: (Πa, P (inl a)) × (Πb, P (inr b)) ≃ Πz, P z :=
equiv.mk _ !is_equiv_sum_rec
definition imp_prod_imp_equiv_sum_imp [constructor] (A B C : Type)
: (A → C) × (B → C) ≃ (A + B → C) :=
!equiv_sum_rec
/- truncatedness -/
variables (A B)
definition is_trunc_sum (n : trunc_index) [HA : is_trunc (n.+2) A] [HB : is_trunc (n.+2) B]
: is_trunc (n.+2) (A + B) :=
begin
apply is_trunc_succ_intro, intro z z',
apply is_trunc_equiv_closed_rev, apply sum_eq_equiv,
induction z with a b, all_goals induction z' with a' b', all_goals esimp,
all_goals exact _,
end
definition is_trunc_sum_excluded (n : trunc_index) [HA : is_trunc n A] [HB : is_trunc n B]
(H : A → B → empty) : is_trunc n (A + B) :=
begin
induction n with n IH,
{ exfalso, exact H !center !center},
{ clear IH, induction n with n IH,
{ apply is_hprop.mk, intros x y,
induction x, all_goals induction y, all_goals esimp,
all_goals try (exfalso;apply H;assumption;assumption), all_goals apply ap _ !is_hprop.elim},
{ apply is_trunc_sum}}
end
variable {B}
definition is_contr_sum_left [HA : is_contr A] (H : ¬B) : is_contr (A + B) :=
is_contr.mk (inl !center)
(λx, sum.rec_on x (λa, ap inl !center_eq) (λb, empty.elim (H b)))
/-
Sums are equivalent to dependent sigmas where the first component is a bool.
The current construction only works for A and B in the same universe.
If we need it for A and B in different universes, we need to insert some lifts.
-/
definition sum_of_sigma_bool {A B : Type.{u}} (v : Σ(b : bool), bool.rec A B b) : A + B :=
by induction v with b x; induction b; exact inl x; exact inr x
definition sigma_bool_of_sum {A B : Type.{u}} (z : A + B) : Σ(b : bool), bool.rec A B b :=
by induction z with a b; exact ⟨ff, a⟩; exact ⟨tt, b⟩
definition sum_equiv_sigma_bool [constructor] (A B : Type.{u})
: A + B ≃ Σ(b : bool), bool.rec A B b :=
equiv.MK sigma_bool_of_sum
sum_of_sigma_bool
begin intro v, induction v with b x, induction b, all_goals reflexivity end
begin intro z, induction z with a b, all_goals reflexivity end
end sum
namespace decidable
open sum pi
definition decidable_equiv (A : Type) : decidable A ≃ A + ¬A :=
begin
fapply equiv.MK:intro a;induction a:try (constructor;assumption;now),
all_goals reflexivity
end
definition is_trunc_decidable (A : Type) (n : trunc_index) [H : is_trunc n A] :
is_trunc n (decidable A) :=
begin
apply is_trunc_equiv_closed_rev,
apply decidable_equiv,
induction n with n IH,
{ apply is_contr_sum_left, exact λna, na !center},
{ apply is_trunc_sum_excluded, exact λa na, na a}
end
end decidable