lean2/hott/types/pi.hlean

333 lines
12 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014-15 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Partially ported from Coq HoTT
Theorems about pi-types (dependent function spaces)
-/
import types.sigma arity
open eq equiv is_equiv funext sigma unit bool is_trunc prod
namespace pi
variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type}
{D : Πa b, C a b → Type}
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g : Πa, B a}
/- Paths -/
/-
Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values
in path types, [H : Πx:X, f x ≈ g x], or concisely, [H : f ~ g].
This equivalence, however, is just the combination of [apd10] and function extensionality
[funext], and as such, [eq_of_homotopy]
Now we show how these things compute.
-/
definition apd10_eq_of_homotopy (h : f ~ g) : apd10 (eq_of_homotopy h) ~ h :=
apd10 (right_inv apd10 h)
definition eq_of_homotopy_eta (p : f = g) : eq_of_homotopy (apd10 p) = p :=
left_inv apd10 p
definition eq_of_homotopy_idp (f : Πa, B a) : eq_of_homotopy (λx : A, refl (f x)) = refl f :=
!eq_of_homotopy_eta
/-
The identification of the path space of a dependent function space,
up to equivalence, is of course just funext.
-/
definition eq_equiv_homotopy (f g : Πx, B x) : (f = g) ≃ (f ~ g) :=
equiv.mk apd10 _
definition pi_eq_equiv (f g : Πx, B x) : (f = g) ≃ (f ~ g) := !eq_equiv_homotopy
definition is_equiv_eq_of_homotopy (f g : Πx, B x)
: is_equiv (eq_of_homotopy : f ~ g → f = g) :=
_
definition homotopy_equiv_eq (f g : Πx, B x) : (f ~ g) ≃ (f = g) :=
equiv.mk eq_of_homotopy _
/- Transport -/
definition pi_transport (p : a = a') (f : Π(b : B a), C a b)
: (transport (λa, Π(b : B a), C a b) p f) ~ (λb, !tr_inv_tr ▸ (p ▸D (f (p⁻¹ ▸ b)))) :=
by induction p; reflexivity
/- A special case of [transport_pi] where the type [B] does not depend on [A],
and so it is just a fixed type [B]. -/
definition pi_transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b) (b : A')
: (transport _ p f) b = p ▸ (f b) :=
by induction p; reflexivity
/- Pathovers -/
definition pi_pathover {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'}
(r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[apo011 C p q] g b') : f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
apply eq_of_pathover_idp, apply r
end
definition pi_pathover_left {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'}
(r : Π(b : B a), f b =[apo011 C p !pathover_tr] g (p ▸ b)) : f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
apply eq_of_pathover_idp, apply r
end
definition pi_pathover_right {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'}
(r : Π(b' : B a'), f (p⁻¹ ▸ b') =[apo011 C p !tr_pathover] g b') : f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
apply eq_of_pathover_idp, apply r
end
definition pi_pathover_constant {C : A → A' → Type} {f : Π(b : A'), C a b}
{g : Π(b : A'), C a' b} {p : a = a'}
(r : Π(b : A'), f b =[p] g b) : f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
exact eq_of_pathover_idp (r b),
end
-- a version where C is uncurried, but where the conclusion of r is still a proper pathover
-- instead of a heterogenous equality
definition pi_pathover' {C : (Σa, B a) → Type} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩}
{p : a = a'} (r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[dpair_eq_dpair p q] g b')
: f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
apply (@eq_of_pathover_idp _ C), exact (r b b (pathover.idpatho b)),
end
definition pi_pathover_left' {C : (Σa, B a) → Type} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩}
{p : a = a'} (r : Π(b : B a), f b =[dpair_eq_dpair p !pathover_tr] g (p ▸ b))
: f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
apply eq_of_pathover_idp, esimp at r, exact !pathover_ap (r b)
end
definition pi_pathover_right' {C : (Σa, B a) → Type} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩}
{p : a = a'} (r : Π(b' : B a'), f (p⁻¹ ▸ b') =[dpair_eq_dpair p !tr_pathover] g b')
: f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
apply eq_of_pathover_idp, esimp at r, exact !pathover_ap (r b)
end
/- Maps on paths -/
/- The action of maps given by lambda. -/
definition ap_lambdaD {C : A' → Type} (p : a = a') (f : Πa b, C b) :
ap (λa b, f a b) p = eq_of_homotopy (λb, ap (λa, f a b) p) :=
begin
apply (eq.rec_on p),
apply inverse,
apply eq_of_homotopy_idp
end
/- Dependent paths -/
/- with more implicit arguments the conclusion of the following theorem is
(Π(b : B a), transportD B C p b (f b) = g (transport B p b)) ≃
(transport (λa, Π(b : B a), C a b) p f = g) -/
definition heq_piD (p : a = a') (f : Π(b : B a), C a b)
(g : Π(b' : B a'), C a' b') : (Π(b : B a), p ▸D (f b) = g (p ▸ b)) ≃ (p ▸ f = g) :=
eq.rec_on p (λg, !homotopy_equiv_eq) g
definition heq_pi {C : A → Type} (p : a = a') (f : Π(b : B a), C a)
(g : Π(b' : B a'), C a') : (Π(b : B a), p ▸ (f b) = g (p ▸ b)) ≃ (p ▸ f = g) :=
eq.rec_on p (λg, !homotopy_equiv_eq) g
section
open sigma sigma.ops
/- more implicit arguments:
(Π(b : B a), transport C (sigma_eq p idp) (f b) = g (p ▸ b)) ≃
(Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) = g (transport B p b)) -/
definition heq_pi_sigma {C : (Σa, B a) → Type} (p : a = a')
(f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) :
(Π(b : B a), (sigma_eq p !pathover_tr) ▸ (f b) = g (p ▸ b)) ≃
(Π(b : B a), p ▸D (f b) = g (p ▸ b)) :=
eq.rec_on p (λg, !equiv.refl) g
end
/- Functorial action -/
variables (f0 : A' → A) (f1 : Π(a':A'), B (f0 a') → B' a')
/- The functoriality of [forall] is slightly subtle: it is contravariant in the domain type and covariant in the codomain, but the codomain is dependent on the domain. -/
definition pi_functor [unfold_full] : (Π(a:A), B a) → (Π(a':A'), B' a') :=
λg a', f1 a' (g (f0 a'))
definition pi_functor_left [unfold_full] (B : A → Type) : (Π(a:A), B a) → (Π(a':A'), B (f0 a')) :=
pi_functor f0 (λa, id)
definition pi_functor_right [unfold_full] {B' : A → Type} (f1 : Π(a:A), B a → B' a)
: (Π(a:A), B a) → (Π(a:A), B' a) :=
pi_functor id f1
definition ap_pi_functor {g g' : Π(a:A), B a} (h : g ~ g')
: ap (pi_functor f0 f1) (eq_of_homotopy h)
= eq_of_homotopy (λa':A', (ap (f1 a') (h (f0 a')))) :=
begin
apply (is_equiv_rect (@apd10 A B g g')), intro p, clear h,
cases p,
apply concat,
exact (ap (ap (pi_functor f0 f1)) (eq_of_homotopy_idp g)),
apply symm, apply eq_of_homotopy_idp
end
/- Equivalences -/
definition is_equiv_pi_functor [instance] [constructor] [H0 : is_equiv f0]
[H1 : Πa', is_equiv (f1 a')] : is_equiv (pi_functor f0 f1) :=
begin
apply (adjointify (pi_functor f0 f1) (pi_functor f0⁻¹
(λ(a : A) (b' : B' (f0⁻¹ a)), transport B (right_inv f0 a) ((f1 (f0⁻¹ a))⁻¹ b')))),
begin
intro h, apply eq_of_homotopy, intro a', esimp,
rewrite [adj f0 a',-tr_compose,fn_tr_eq_tr_fn _ f1,right_inv (f1 _)],
apply apd
end,
begin
intro h, apply eq_of_homotopy, intro a, esimp,
rewrite [left_inv (f1 _)],
apply apd
end
end
definition pi_equiv_pi_of_is_equiv [constructor] [H : is_equiv f0]
[H1 : Πa', is_equiv (f1 a')] : (Πa, B a) ≃ (Πa', B' a') :=
equiv.mk (pi_functor f0 f1) _
definition pi_equiv_pi [constructor] (f0 : A' ≃ A) (f1 : Πa', (B (to_fun f0 a') ≃ B' a'))
: (Πa, B a) ≃ (Πa', B' a') :=
pi_equiv_pi_of_is_equiv (to_fun f0) (λa', to_fun (f1 a'))
definition pi_equiv_pi_right [constructor] {P Q : A → Type} (g : Πa, P a ≃ Q a)
: (Πa, P a) ≃ (Πa, Q a) :=
pi_equiv_pi equiv.refl g
/- Equivalence if one of the types is contractible -/
definition pi_equiv_of_is_contr_left [constructor] (B : A → Type) [H : is_contr A]
: (Πa, B a) ≃ B (center A) :=
begin
fapply equiv.MK,
{ intro f, exact f (center A)},
{ intro b a, exact (center_eq a) ▸ b},
{ intro b, rewrite [prop_eq_of_is_contr (center_eq (center A)) idp]},
{ intro f, apply eq_of_homotopy, intro a, induction (center_eq a),
rewrite [prop_eq_of_is_contr (center_eq (center A)) idp]}
end
definition pi_equiv_of_is_contr_right [constructor] [H : Πa, is_contr (B a)]
: (Πa, B a) ≃ unit :=
begin
fapply equiv.MK,
{ intro f, exact star},
{ intro u a, exact !center},
{ intro u, induction u, reflexivity},
{ intro f, apply eq_of_homotopy, intro a, apply is_prop.elim}
end
/- Interaction with other type constructors -/
-- most of these are in the file of the other type constructor
definition pi_empty_left [constructor] (B : empty → Type) : (Πx, B x) ≃ unit :=
begin
fapply equiv.MK,
{ intro f, exact star},
{ intro x y, contradiction},
{ intro x, induction x, reflexivity},
{ intro f, apply eq_of_homotopy, intro y, contradiction},
end
definition pi_unit_left [constructor] (B : unit → Type) : (Πx, B x) ≃ B star :=
!pi_equiv_of_is_contr_left
definition pi_bool_left [constructor] (B : bool → Type) : (Πx, B x) ≃ B ff × B tt :=
begin
fapply equiv.MK,
{ intro f, exact (f ff, f tt)},
{ intro x b, induction x, induction b: assumption},
{ intro x, induction x, reflexivity},
{ intro f, apply eq_of_homotopy, intro b, induction b: reflexivity},
end
/- Truncatedness: any dependent product of n-types is an n-type -/
theorem is_trunc_pi (B : A → Type) (n : trunc_index)
[H : ∀a, is_trunc n (B a)] : is_trunc n (Πa, B a) :=
begin
revert B H,
eapply (trunc_index.rec_on n),
{intro B H,
fapply is_contr.mk,
intro a, apply center,
intro f, apply eq_of_homotopy,
intro x, apply (center_eq (f x))},
{intro n IH B H,
fapply is_trunc_succ_intro, intro f g,
fapply is_trunc_equiv_closed,
apply equiv.symm, apply eq_equiv_homotopy,
apply IH,
intro a,
show is_trunc n (f a = g a), from
is_trunc_eq n (f a) (g a)}
end
local attribute is_trunc_pi [instance]
theorem is_trunc_pi_eq [instance] [priority 500] (n : trunc_index) (f g : Πa, B a)
[H : ∀a, is_trunc n (f a = g a)] : is_trunc n (f = g) :=
begin
apply is_trunc_equiv_closed_rev,
apply eq_equiv_homotopy
end
theorem is_trunc_not [instance] (n : trunc_index) (A : Type) : is_trunc (n.+1) ¬A :=
by unfold not;exact _
theorem is_prop_pi_eq [instance] [priority 490] (a : A) : is_prop (Π(a' : A), a = a') :=
is_prop_of_imp_is_contr
( assume (f : Πa', a = a'),
have is_contr A, from is_contr.mk a f,
by exact _) /- force type clas resolution -/
theorem is_prop_neg (A : Type) : is_prop (¬A) := _
local attribute ne [reducible]
theorem is_prop_ne [instance] {A : Type} (a b : A) : is_prop (a ≠ b) := _
/- Symmetry of Π -/
definition is_equiv_flip [instance] {P : A → A' → Type}
: is_equiv (@function.flip A A' P) :=
begin
fapply is_equiv.mk,
exact (@function.flip _ _ (function.flip P)),
repeat (intro f; apply idp)
end
definition pi_comm_equiv {P : A → A' → Type} : (Πa b, P a b) ≃ (Πb a, P a b) :=
equiv.mk (@function.flip _ _ P) _
end pi
attribute pi.is_trunc_pi [instance] [priority 1520]