lean2/hott/hit/quotient_functor.hlean
2015-12-28 09:06:13 -08:00

113 lines
5.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Ulrik Buchholtz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz
Functoriality of quotients and a condition for when an equivalence is induced.
-/
import types.sigma .quotient
open eq is_equiv equiv prod prod.ops sigma sigma.ops
namespace quotient
section
variables {A : Type} (R : A → A → Type)
{B : Type} (Q : B → B → Type)
(f : A → B) (k : Πa a' : A, R a a' → Q (f a) (f a'))
include f k
protected definition functor [reducible] : quotient R → quotient Q :=
quotient.elim (λa, class_of Q (f a)) (λa a' r, eq_of_rel Q (k a a' r))
variables [F : is_equiv f] [K : Πa a', is_equiv (k a a')]
include F K
protected definition functor_inv [reducible] : quotient Q → quotient R :=
quotient.elim (λb, class_of R (f⁻¹ b))
(λb b' q, eq_of_rel R ((k (f⁻¹ b) (f⁻¹ b'))⁻¹
((right_inv f b)⁻¹ ▸ (right_inv f b')⁻¹ ▸ q)))
protected definition is_equiv [instance]
: is_equiv (quotient.functor R Q f k):=
begin
fapply adjointify _ (quotient.functor_inv R Q f k),
{ intro qb, induction qb with b b b' q,
{ apply ap (class_of Q), apply right_inv },
{ apply eq_pathover, rewrite [ap_id,ap_compose' (quotient.elim _ _)],
do 2 krewrite elim_eq_of_rel, rewrite (right_inv (k (f⁻¹ b) (f⁻¹ b'))),
assert H1 : pathover (λz : B × B, Q z.1 z.2)
((right_inv f b)⁻¹ ▸ (right_inv f b')⁻¹ ▸ q)
(prod_eq (right_inv f b) (right_inv f b')) q,
{ apply pathover_of_eq_tr, krewrite [prod_eq_inv,prod_eq_transport] },
assert H2 : square
(ap (λx : (Σz : B × B, Q z.1 z.2), class_of Q x.1.1)
(sigma_eq (prod_eq (right_inv f b) (right_inv f b')) H1))
(ap (λx : (Σz : B × B, Q z.1 z.2), class_of Q x.1.2)
(sigma_eq (prod_eq (right_inv f b) (right_inv f b')) H1))
(eq_of_rel Q ((right_inv f b)⁻¹ ▸ (right_inv f b')⁻¹ ▸ q))
(eq_of_rel Q q),
{ exact
natural_square (λw : (Σz : B × B, Q z.1 z.2), eq_of_rel Q w.2)
(sigma_eq (prod_eq (right_inv f b) (right_inv f b')) H1) },
krewrite (ap_compose' (class_of Q)) at H2,
krewrite (ap_compose' (λz : B × B, z.1)) at H2,
rewrite sigma.ap_pr1 at H2, rewrite sigma_eq_pr1 at H2,
krewrite prod.ap_pr1 at H2, krewrite prod_eq_pr1 at H2,
krewrite (ap_compose' (class_of Q) (λx : (Σz : B × B, Q z.1 z.2), x.1.2)) at H2,
krewrite (ap_compose' (λz : B × B, z.2)) at H2,
rewrite sigma.ap_pr1 at H2, rewrite sigma_eq_pr1 at H2,
krewrite prod.ap_pr2 at H2, krewrite prod_eq_pr2 at H2,
apply H2 } },
{ intro qa, induction qa with a a a' r,
{ apply ap (class_of R), apply left_inv },
{ apply eq_pathover, rewrite [ap_id,(ap_compose' (quotient.elim _ _))],
do 2 krewrite elim_eq_of_rel,
assert H1 : pathover (λz : A × A, R z.1 z.2)
((left_inv f a)⁻¹ ▸ (left_inv f a')⁻¹ ▸ r)
(prod_eq (left_inv f a) (left_inv f a')) r,
{ apply pathover_of_eq_tr, krewrite [prod_eq_inv,prod_eq_transport] },
assert H2 : square
(ap (λx : (Σz : A × A, R z.1 z.2), class_of R x.1.1)
(sigma_eq (prod_eq (left_inv f a) (left_inv f a')) H1))
(ap (λx : (Σz : A × A, R z.1 z.2), class_of R x.1.2)
(sigma_eq (prod_eq (left_inv f a) (left_inv f a')) H1))
(eq_of_rel R ((left_inv f a)⁻¹ ▸ (left_inv f a')⁻¹ ▸ r))
(eq_of_rel R r),
{ exact
natural_square (λw : (Σz : A × A, R z.1 z.2), eq_of_rel R w.2)
(sigma_eq (prod_eq (left_inv f a) (left_inv f a')) H1) },
krewrite (ap_compose' (class_of R)) at H2,
krewrite (ap_compose' (λz : A × A, z.1)) at H2,
rewrite sigma.ap_pr1 at H2, rewrite sigma_eq_pr1 at H2,
krewrite prod.ap_pr1 at H2, krewrite prod_eq_pr1 at H2,
krewrite (ap_compose' (class_of R) (λx : (Σz : A × A, R z.1 z.2), x.1.2)) at H2,
krewrite (ap_compose' (λz : A × A, z.2)) at H2,
rewrite sigma.ap_pr1 at H2, rewrite sigma_eq_pr1 at H2,
krewrite prod.ap_pr2 at H2, krewrite prod_eq_pr2 at H2,
assert H3 :
(k (f⁻¹ (f a)) (f⁻¹ (f a')))⁻¹
((right_inv f (f a))⁻¹ ▸ (right_inv f (f a'))⁻¹ ▸ k a a' r)
= (left_inv f a)⁻¹ ▸ (left_inv f a')⁻¹ ▸ r,
{ rewrite [adj f a,adj f a',ap_inv',ap_inv'],
rewrite [-(tr_compose _ f (left_inv f a')⁻¹ (k a a' r)),
-(tr_compose _ f (left_inv f a)⁻¹)],
rewrite [-(fn_tr_eq_tr_fn (left_inv f a')⁻¹ (λx, k a x) r),
-(fn_tr_eq_tr_fn (left_inv f a)⁻¹
(λx, k x (f⁻¹ (f a')))),
left_inv (k _ _)] },
rewrite H3, apply H2 } }
end
end
section
open equiv.ops
variables {A : Type} (R : A → A → Type)
{B : Type} (Q : B → B → Type)
(f : A ≃ B) (k : Πa a' : A, R a a' ≃ Q (f a) (f a'))
include f k
/- This could also be proved using ua, but then it wouldn't compute -/
protected definition equiv : quotient R ≃ quotient Q :=
equiv.mk (quotient.functor R Q f k) _
end
end quotient