523 lines
16 KiB
Text
523 lines
16 KiB
Text
/-
|
||
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Robert Y. Lewis
|
||
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
|
||
This construction follows Bishop and Bridges (1985).
|
||
|
||
At this point, we no longer proceed constructively: this file makes heavy use of decidability,
|
||
excluded middle, and Hilbert choice.
|
||
|
||
Here, we show that ℝ is complete.
|
||
-/
|
||
|
||
import data.real.basic data.real.order data.real.division data.rat data.nat data.pnat
|
||
import logic.choice
|
||
open -[coercions] rat
|
||
local notation 0 := rat.of_num 0
|
||
local notation 1 := rat.of_num 1
|
||
open -[coercions] nat
|
||
open eq.ops
|
||
open pnat
|
||
|
||
|
||
local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
|
||
local notation 3 := subtype.tag (nat.of_num 3) dec_trivial
|
||
|
||
namespace s
|
||
|
||
|
||
theorem rat_approx_l1 {s : seq} (H : regular s) :
|
||
∀ n : ℕ+, ∃ q : ℚ, ∃ N : ℕ+, ∀ m : ℕ+, m ≥ N → abs (s m - q) ≤ n⁻¹ :=
|
||
begin
|
||
intro n,
|
||
existsi (s (2 * n)),
|
||
existsi 2 * n,
|
||
intro m Hm,
|
||
apply rat.le.trans,
|
||
apply H,
|
||
rewrite -(add_halves n),
|
||
apply rat.add_le_add_right,
|
||
apply inv_ge_of_le Hm
|
||
end
|
||
|
||
theorem rat_approx {s : seq} (H : regular s) :
|
||
∀ n : ℕ+, ∃ q : ℚ, s_le (s_abs (sadd s (sneg (const q)))) (const n⁻¹) :=
|
||
begin
|
||
intro m,
|
||
rewrite ↑s_le,
|
||
apply exists.elim (rat_approx_l1 H m),
|
||
intro q Hq,
|
||
apply exists.elim Hq,
|
||
intro N HN,
|
||
existsi q,
|
||
apply nonneg_of_bdd_within,
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | apply abs_reg_of_reg | apply const_reg
|
||
| assumption),
|
||
intro n,
|
||
existsi N,
|
||
intro p Hp,
|
||
rewrite ↑[sadd, sneg, s_abs, const],
|
||
apply rat.le.trans,
|
||
rotate 1,
|
||
apply rat.sub_le_sub_left,
|
||
apply HN,
|
||
apply pnat.le.trans,
|
||
apply Hp,
|
||
rewrite -*pnat.mul.assoc,
|
||
apply pnat.mul_le_mul_left,
|
||
rewrite [sub_self, -neg_zero],
|
||
apply neg_le_neg,
|
||
apply rat.le_of_lt,
|
||
apply inv_pos
|
||
end
|
||
|
||
definition r_abs (s : reg_seq) : reg_seq :=
|
||
reg_seq.mk (s_abs (reg_seq.sq s)) (abs_reg_of_reg (reg_seq.is_reg s))
|
||
|
||
theorem abs_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
|
||
s_abs s ≡ s_abs t :=
|
||
begin
|
||
rewrite [↑equiv at *],
|
||
intro n,
|
||
rewrite ↑s_abs,
|
||
apply rat.le.trans,
|
||
apply abs_abs_sub_abs_le_abs_sub,
|
||
apply Heq
|
||
end
|
||
|
||
theorem r_abs_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_abs s) (r_abs t) :=
|
||
abs_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H
|
||
|
||
theorem r_rat_approx (s : reg_seq) :
|
||
∀ n : ℕ+, ∃ q : ℚ, r_le (r_abs (radd s (rneg (r_const q)))) (r_const n⁻¹) :=
|
||
rat_approx (reg_seq.is_reg s)
|
||
|
||
theorem const_bound {s : seq} (Hs : regular s) (n : ℕ+) :
|
||
s_le (s_abs (sadd s (sneg (const (s n))))) (const n⁻¹) :=
|
||
begin
|
||
rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const],
|
||
intro m,
|
||
apply iff.mp !rat.le_add_iff_neg_le_sub_left,
|
||
apply rat.le.trans,
|
||
apply Hs,
|
||
apply rat.add_le_add_right,
|
||
rewrite -*pnat.mul.assoc,
|
||
apply inv_ge_of_le,
|
||
apply pnat.mul_le_mul_left
|
||
end
|
||
|
||
theorem abs_const (a : ℚ) : const (abs a) ≡ s_abs (const a) :=
|
||
begin
|
||
rewrite [↑s_abs, ↑const],
|
||
apply equiv.refl
|
||
end
|
||
|
||
theorem r_abs_const (a : ℚ) : requiv (r_const (abs a) ) (r_abs (r_const a)) := abs_const a
|
||
|
||
theorem equiv_abs_of_ge_zero {s : seq} (Hs : regular s) (Hz : s_le zero s) : s_abs s ≡ s :=
|
||
begin
|
||
apply eq_of_bdd,
|
||
apply abs_reg_of_reg Hs,
|
||
apply Hs,
|
||
intro j,
|
||
rewrite ↑s_abs,
|
||
let Hz' := s_nonneg_of_ge_zero Hs Hz,
|
||
existsi 2 * j,
|
||
intro n Hn,
|
||
apply or.elim (decidable.em (s n ≥ 0)),
|
||
intro Hpos,
|
||
rewrite [rat.abs_of_nonneg Hpos, sub_self, abs_zero],
|
||
apply rat.le_of_lt,
|
||
apply inv_pos,
|
||
intro Hneg,
|
||
let Hneg' := lt_of_not_ge Hneg,
|
||
have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'),
|
||
rewrite [rat.abs_of_neg Hneg', rat.abs_of_pos Hsn],
|
||
apply rat.le.trans,
|
||
apply rat.add_le_add,
|
||
repeat (apply rat.neg_le_neg; apply Hz'),
|
||
rewrite *rat.neg_neg,
|
||
apply rat.le.trans,
|
||
apply rat.add_le_add,
|
||
repeat (apply inv_ge_of_le; apply Hn),
|
||
rewrite pnat.add_halves,
|
||
apply rat.le.refl
|
||
end
|
||
|
||
theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) : s_abs s ≡ sneg s :=
|
||
begin
|
||
apply eq_of_bdd,
|
||
apply abs_reg_of_reg Hs,
|
||
apply reg_neg_reg Hs,
|
||
intro j,
|
||
rewrite [↑s_abs, ↑s_le at Hz],
|
||
have Hz' : nonneg (sneg s), begin
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 3,
|
||
apply Hz,
|
||
rotate 2,
|
||
apply s_zero_add,
|
||
repeat (apply Hs | apply zero_is_reg | apply reg_neg_reg | apply reg_add_reg)
|
||
end,
|
||
existsi 2 * j,
|
||
intro n Hn,
|
||
apply or.elim (decidable.em (s n ≥ 0)),
|
||
intro Hpos,
|
||
have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos,
|
||
rewrite [rat.abs_of_nonneg Hpos, ↑sneg, rat.sub_neg_eq_add, rat.abs_of_nonneg Hsn],
|
||
rewrite [↑nonneg at Hz', ↑sneg at Hz'],
|
||
apply rat.le.trans,
|
||
apply rat.add_le_add,
|
||
repeat apply (rat.le_of_neg_le_neg !Hz'),
|
||
apply rat.le.trans,
|
||
apply rat.add_le_add,
|
||
repeat (apply inv_ge_of_le; apply Hn),
|
||
rewrite pnat.add_halves,
|
||
apply rat.le.refl,
|
||
intro Hneg,
|
||
let Hneg' := lt_of_not_ge Hneg,
|
||
rewrite [rat.abs_of_neg Hneg', ↑sneg, rat.sub_neg_eq_add, rat.neg_add_eq_sub, rat.sub_self,
|
||
abs_zero],
|
||
apply rat.le_of_lt,
|
||
apply inv_pos
|
||
end
|
||
|
||
theorem r_equiv_abs_of_ge_zero {s : reg_seq} (Hz : r_le r_zero s) : requiv (r_abs s) s :=
|
||
equiv_abs_of_ge_zero (reg_seq.is_reg s) Hz
|
||
|
||
theorem r_equiv_neg_abs_of_le_zero {s : reg_seq} (Hz : r_le s r_zero) : requiv (r_abs s) (-s) :=
|
||
equiv_neg_abs_of_le_zero (reg_seq.is_reg s) Hz
|
||
|
||
end s
|
||
|
||
namespace real
|
||
open [classes] s
|
||
|
||
theorem p_add_fractions (n : ℕ+) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ :=
|
||
assert T : 2⁻¹ + 2⁻¹ * 3⁻¹ + 3⁻¹ = 1, from dec_trivial,
|
||
by rewrite[*inv_mul_eq_mul_inv,-*rat.right_distrib,T,rat.one_mul]
|
||
|
||
theorem rewrite_helper9 (a b c : ℝ) : b - c = (b - a) - (c - a) :=
|
||
by rewrite[-sub_add_eq_sub_sub_swap,sub_add_cancel]
|
||
|
||
theorem rewrite_helper10 (a b c d : ℝ) : c - d = (c - a) + (a - b) + (b - d) :=
|
||
by rewrite[*add_sub,*sub_add_cancel]
|
||
|
||
noncomputable definition rep (x : ℝ) : s.reg_seq := some (quot.exists_rep x)
|
||
|
||
definition re_abs (x : ℝ) : ℝ :=
|
||
quot.lift_on x (λ a, quot.mk (s.r_abs a)) (take a b Hab, quot.sound (s.r_abs_well_defined Hab))
|
||
|
||
theorem r_abs_nonneg {x : ℝ} : zero ≤ x → re_abs x = x :=
|
||
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_abs_of_ge_zero Ha))
|
||
|
||
theorem r_abs_nonpos {x : ℝ} : x ≤ zero → re_abs x = -x :=
|
||
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_neg_abs_of_le_zero Ha))
|
||
|
||
theorem abs_const' (a : ℚ) : of_rat (rat.abs a) = re_abs (of_rat a) := quot.sound (s.r_abs_const a)
|
||
|
||
theorem re_abs_is_abs : re_abs = real.abs := funext
|
||
(begin
|
||
intro x,
|
||
apply eq.symm,
|
||
let Hor := decidable.em (zero ≤ x),
|
||
apply or.elim Hor,
|
||
intro Hor1,
|
||
rewrite [abs_of_nonneg Hor1, r_abs_nonneg Hor1],
|
||
intro Hor2,
|
||
have Hor2' : x ≤ zero, from le_of_lt (lt_of_not_ge Hor2),
|
||
rewrite [abs_of_neg (lt_of_not_ge Hor2), r_abs_nonpos Hor2']
|
||
end)
|
||
|
||
theorem abs_const (a : ℚ) : of_rat (rat.abs a) = abs (of_rat a) :=
|
||
by rewrite -re_abs_is_abs -- ????
|
||
|
||
theorem rat_approx' (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, re_abs (x - of_rat q) ≤ of_rat n⁻¹ :=
|
||
quot.induction_on x (λ s n, s.r_rat_approx s n)
|
||
|
||
theorem rat_approx (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, abs (x - of_rat q) ≤ of_rat n⁻¹ :=
|
||
by rewrite -re_abs_is_abs; apply rat_approx'
|
||
|
||
noncomputable definition approx (x : ℝ) (n : ℕ+) := some (rat_approx x n)
|
||
|
||
theorem approx_spec (x : ℝ) (n : ℕ+) : abs (x - (of_rat (approx x n))) ≤ of_rat n⁻¹ :=
|
||
some_spec (rat_approx x n)
|
||
|
||
theorem approx_spec' (x : ℝ) (n : ℕ+) : abs ((of_rat (approx x n)) - x) ≤ of_rat n⁻¹ :=
|
||
by rewrite abs_sub; apply approx_spec
|
||
|
||
notation `r_seq` := ℕ+ → ℝ
|
||
|
||
noncomputable definition converges_to (X : r_seq) (a : ℝ) (N : ℕ+ → ℕ+) :=
|
||
∀ k : ℕ+, ∀ n : ℕ+, n ≥ N k → abs (X n - a) ≤ of_rat k⁻¹
|
||
|
||
noncomputable definition cauchy (X : r_seq) (M : ℕ+ → ℕ+) :=
|
||
∀ k : ℕ+, ∀ m n : ℕ+, m ≥ M k → n ≥ M k → abs (X m - X n) ≤ of_rat k⁻¹
|
||
|
||
theorem cauchy_of_converges_to {X : r_seq} {a : ℝ} {N : ℕ+ → ℕ+} (Hc : converges_to X a N) :
|
||
cauchy X (λ k, N (2 * k)) :=
|
||
begin
|
||
intro k m n Hm Hn,
|
||
rewrite (rewrite_helper9 a),
|
||
apply le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
apply le.trans,
|
||
apply add_le_add,
|
||
apply Hc,
|
||
apply Hm,
|
||
krewrite abs_neg,
|
||
apply Hc,
|
||
apply Hn,
|
||
xrewrite of_rat_add,
|
||
apply of_rat_le_of_rat_of_le,
|
||
rewrite pnat.add_halves,
|
||
apply rat.le.refl
|
||
end
|
||
|
||
definition Nb (M : ℕ+ → ℕ+) := λ k, pnat.max (3 * k) (M (2 * k))
|
||
|
||
theorem Nb_spec_right (M : ℕ+ → ℕ+) (k : ℕ+) : M (2 * k) ≤ Nb M k := !max_right
|
||
|
||
theorem Nb_spec_left (M : ℕ+ → ℕ+) (k : ℕ+) : 3 * k ≤ Nb M k := !max_left
|
||
|
||
noncomputable definition lim_seq {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : ℕ+ → ℚ :=
|
||
λ k, approx (X (Nb M k)) (2 * k)
|
||
|
||
theorem lim_seq_reg_helper {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) {m n : ℕ+}
|
||
(Hmn : M (2 * n) ≤M (2 * m)) :
|
||
abs (of_rat (lim_seq Hc m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs
|
||
(X (Nb M n) - of_rat (lim_seq Hc n)) ≤ of_rat (m⁻¹ + n⁻¹) :=
|
||
begin
|
||
apply le.trans,
|
||
apply add_le_add_three,
|
||
apply approx_spec',
|
||
rotate 1,
|
||
apply approx_spec,
|
||
rotate 1,
|
||
apply Hc,
|
||
rotate 1,
|
||
apply Nb_spec_right,
|
||
rotate 1,
|
||
apply pnat.le.trans,
|
||
apply Hmn,
|
||
apply Nb_spec_right,
|
||
rewrite [*of_rat_add, rat.add.assoc, pnat.add_halves],
|
||
apply of_rat_le_of_rat_of_le,
|
||
apply rat.add_le_add_right,
|
||
apply inv_ge_of_le,
|
||
apply pnat.mul_le_mul_left
|
||
end
|
||
|
||
theorem lim_seq_reg {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : s.regular (lim_seq Hc) :=
|
||
begin
|
||
rewrite ↑s.regular,
|
||
intro m n,
|
||
apply le_of_rat_le_of_rat,
|
||
rewrite [abs_const, -of_rat_sub, -sub_eq_add_neg, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],
|
||
apply real.le.trans,
|
||
apply abs_add_three,
|
||
let Hor := decidable.em (M (2 * m) ≥ M (2 * n)),
|
||
apply or.elim Hor,
|
||
intro Hor1,
|
||
apply lim_seq_reg_helper Hc Hor1,
|
||
intro Hor2,
|
||
let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2),
|
||
rewrite [real.abs_sub (X (Nb M n)), abs_sub (X (Nb M m)), abs_sub, -- ???
|
||
rat.add.comm, add_comm_three],
|
||
apply lim_seq_reg_helper Hc Hor2'
|
||
end
|
||
|
||
theorem lim_seq_spec {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) (k : ℕ+) :
|
||
s.s_le (s.s_abs (s.sadd (lim_seq Hc) (s.sneg (s.const (lim_seq Hc k))) )) (s.const k⁻¹) :=
|
||
begin
|
||
apply s.const_bound,
|
||
apply lim_seq_reg
|
||
end
|
||
|
||
noncomputable definition r_lim_seq {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : s.reg_seq :=
|
||
s.reg_seq.mk (lim_seq Hc) (lim_seq_reg Hc)
|
||
|
||
theorem r_lim_seq_spec {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) (k : ℕ+) :
|
||
s.r_le (s.r_abs (( s.radd (r_lim_seq Hc) (s.rneg (s.r_const ((s.reg_seq.sq (r_lim_seq Hc)) k)))))) (s.r_const (k)⁻¹) :=
|
||
lim_seq_spec Hc k
|
||
|
||
noncomputable definition lim {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : ℝ :=
|
||
quot.mk (r_lim_seq Hc)
|
||
|
||
theorem re_lim_spec {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) :
|
||
re_abs ((lim Hc) - (of_rat ((lim_seq Hc) k))) ≤ of_rat k⁻¹ :=
|
||
r_lim_seq_spec Hc k
|
||
|
||
theorem lim_spec' {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) :
|
||
abs ((lim Hc) - (of_rat ((lim_seq Hc) k))) ≤ of_rat k⁻¹ :=
|
||
by rewrite -re_abs_is_abs; apply re_lim_spec
|
||
|
||
theorem lim_spec {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) :
|
||
abs ((of_rat ((lim_seq Hc) k)) - (lim Hc)) ≤ of_rat (k)⁻¹ :=
|
||
by rewrite abs_sub; apply lim_spec'
|
||
|
||
theorem converges_of_cauchy {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) :
|
||
converges_to X (lim Hc) (Nb M) :=
|
||
begin
|
||
intro k n Hn,
|
||
rewrite (rewrite_helper10 (X (Nb M n)) (of_rat (lim_seq Hc n))),
|
||
apply le.trans,
|
||
apply abs_add_three,
|
||
apply le.trans,
|
||
apply add_le_add_three,
|
||
apply Hc,
|
||
apply pnat.le.trans,
|
||
rotate 1,
|
||
apply Hn,
|
||
rotate_right 1,
|
||
apply Nb_spec_right,
|
||
have HMk : M (2 * k) ≤ Nb M n, begin
|
||
apply pnat.le.trans,
|
||
apply Nb_spec_right,
|
||
apply pnat.le.trans,
|
||
apply Hn,
|
||
apply pnat.le.trans,
|
||
apply mul_le_mul_left 3,
|
||
apply Nb_spec_left
|
||
end,
|
||
apply HMk,
|
||
rewrite ↑lim_seq,
|
||
apply approx_spec,
|
||
apply lim_spec,
|
||
rewrite 2 of_rat_add,
|
||
apply of_rat_le_of_rat_of_le,
|
||
apply rat.le.trans,
|
||
apply rat.add_le_add_three,
|
||
apply rat.le.refl,
|
||
apply inv_ge_of_le,
|
||
apply pnat_mul_le_mul_left',
|
||
apply pnat.le.trans,
|
||
rotate 1,
|
||
apply Hn,
|
||
rotate_right 1,
|
||
apply Nb_spec_left,
|
||
apply inv_ge_of_le,
|
||
apply pnat.le.trans,
|
||
rotate 1,
|
||
apply Hn,
|
||
rotate_right 1,
|
||
apply Nb_spec_left,
|
||
rewrite [-*pnat.mul.assoc, p_add_fractions],
|
||
apply rat.le.refl
|
||
end
|
||
|
||
--------------------------------------------------
|
||
-- archimedean property
|
||
|
||
theorem archimedean (x y : ℝ) (Hx : x > 0) (Hy : y > 0) : ∃ n : ℕ, (of_rat (of_nat n)) * x ≥ y := sorry
|
||
|
||
--------------------------------------------------
|
||
-- supremum property
|
||
|
||
section supremum
|
||
open prod nat
|
||
|
||
local notation 2 := (1 : ℚ) + 1
|
||
parameter X : ℝ → Prop
|
||
|
||
definition rpt {A : Type} (op : A → A) : ℕ → A → A
|
||
| rpt 0 := λ a, a
|
||
| rpt (succ k) := λ a, ((rpt k) (op a))
|
||
|
||
|
||
definition ub (x : ℝ) := ∀ y : ℝ, X y → y ≤ x
|
||
definition bounded := ∃ x : ℝ, ub x
|
||
definition sup (x : ℝ) := ub x ∧ ∀ y : ℝ, ub y → y ≤ x
|
||
|
||
|
||
parameter elt : ℝ
|
||
hypothesis inh : X elt
|
||
parameter bound : ℝ
|
||
hypothesis bdd : ub bound
|
||
|
||
parameter floor : ℝ → int
|
||
parameter ceil : ℝ → int
|
||
|
||
definition avg (a b : ℚ) := a / 2 + b / 2
|
||
|
||
definition bisect (ab : ℚ × ℚ) :=
|
||
if ub (avg (pr1 ab) (pr2 ab)) then
|
||
(pr1 ab, (avg (pr1 ab) (pr2 ab)))
|
||
else
|
||
(avg (pr1 ab) (pr2 ab), pr2 ab)
|
||
|
||
definition under : ℚ := of_int (floor (elt - 1))
|
||
|
||
theorem under_spec : ¬ ub under := sorry
|
||
|
||
definition over : ℚ := of_int (ceil (bound + 1)) -- b
|
||
|
||
theorem over_spec : ub over := sorry
|
||
|
||
definition under_seq := λ n : ℕ, pr1 (rpt bisect n (under, over)) -- A
|
||
|
||
definition over_seq := λ n : ℕ, pr2 (rpt bisect n (under, over)) -- B
|
||
|
||
definition avg_seq := λ n : ℕ, avg (over_seq n) (under_seq n) -- C
|
||
|
||
theorem over_0 : over_seq 0 = over := rfl
|
||
theorem under_0 : under_seq 0 = under := rfl
|
||
|
||
theorem under_succ (n : ℕ) : under_seq (succ n) = (if ub (avg_seq n) then under_seq n else avg_seq n) := sorry
|
||
|
||
theorem over_succ (n : ℕ) : over_seq (succ n) = (if ub (avg_seq n) then avg_seq n else over_seq n) := sorry
|
||
|
||
theorem rat.pow_zero (a : ℚ) : rat.pow a 0 = 1 := sorry
|
||
|
||
theorem width (n : ℕ) : over_seq n - under_seq n = (over - under) / (rat.pow 2 n) :=
|
||
nat.induction_on n
|
||
(by rewrite [over_0, under_0, rat.pow_zero, rat.div_one])
|
||
(begin
|
||
intro a Ha,
|
||
rewrite [over_succ, under_succ],
|
||
cases (decidable.em (ub (avg_seq a))),
|
||
rewrite [*if_pos a_1],
|
||
apply sorry,
|
||
rewrite [*if_neg a_1],
|
||
apply sorry
|
||
end)
|
||
|
||
theorem twos (y r : ℚ) (H : 0 < r) : ∃ n : ℕ, y / (rat.pow 2 n) < r := sorry
|
||
|
||
theorem PA (n : ℕ) : ¬ ub (under_seq n) :=
|
||
nat.induction_on n
|
||
(by rewrite under_0; apply under_spec)
|
||
(begin
|
||
intro a Ha,
|
||
rewrite under_succ,
|
||
cases (decidable.em (ub (avg_seq a))),
|
||
rewrite (if_pos a_1),
|
||
assumption,
|
||
rewrite (if_neg a_1),
|
||
assumption
|
||
end)
|
||
|
||
theorem PB (n : ℕ) : ub (over_seq n) :=
|
||
nat.induction_on n
|
||
(by rewrite over_0; apply over_spec)
|
||
(begin
|
||
intro a Ha,
|
||
rewrite over_succ,
|
||
cases (decidable.em (ub (avg_seq a))),
|
||
rewrite (if_pos a_1),
|
||
assumption,
|
||
rewrite (if_neg a_1),
|
||
assumption
|
||
end)
|
||
|
||
theorem und_ov : under < over :=
|
||
let abv := exists_not_of_not_forall (under_spec) in
|
||
begin
|
||
let abv' := exists_not_of_not_forall (under_spec),
|
||
|
||
end
|
||
|
||
end supremum
|
||
|
||
end real
|