lean2/library/theories/analysis/real_limit.lean

506 lines
19 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Instantiates the reals as a metric space, and expresses completeness, sup, and inf in
a manner that is less constructive, but more convenient, than the way it is done in
data.real.complete.
The definitions here are noncomputable, for various reasons:
(1) We rely on the nonconstructive definition of abs.
(2) The theory of the reals uses the "some" operator e.g. to define the ceiling function.
This can't be defined constructively as an operation on the quotient, because
such a function is not continuous.
(3) We use "forall" and "exists" to say that a series converges, rather than carrying
around rates of convergence explicitly. We then use "some" whenever we need to extract
information, such as the limit.
These could be avoided in a constructive theory of analysis, but here we will not
follow that route.
-/
import .metric_space data.real.complete
open real eq.ops classical
noncomputable theory
namespace real
/- the reals form a metric space -/
protected definition to_metric_space [instance] : metric_space :=
⦃ metric_space,
dist := λ x y, abs (x - y),
dist_self := λ x, abstract by rewrite [sub_self, abs_zero] end,
eq_of_dist_eq_zero := @eq_of_abs_sub_eq_zero,
dist_comm := abs_sub,
dist_triangle := abs_sub_le
section nat
open nat
definition converges_to_seq (X : ) (y : ) : Prop :=
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → abs (X n - y) < ε
proposition converges_to_seq.intro {X : } {y : }
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → abs (X n - y) ≤ ε) :
converges_to_seq X y :=
metric_space.converges_to_seq.intro H
notation X `⟶` y `in` `` := converges_to_seq X y
definition converges_seq [class] (X : ) : Prop := ∃ y, X ⟶ y in
definition limit_seq (X : ) [H : converges_seq X] : := some H
proposition converges_to_limit_seq (X : ) [H : converges_seq X] :
(X ⟶ limit_seq X in ) :=
some_spec H
proposition converges_to_seq_unique {X : } {y₁ y₂ : }
(H₁ : X ⟶ y₁ in ) (H₂ : X ⟶ y₂ in ) : y₁ = y₂ :=
metric_space.converges_to_seq_unique H₁ H₂
proposition eq_limit_of_converges_to_seq {X : } (y : ) (H : X ⟶ y in ) :
y = @limit_seq X (exists.intro y H) :=
converges_to_seq_unique H (@converges_to_limit_seq X (exists.intro y H))
proposition converges_to_seq_constant (y : ) : (λn, y) ⟶ y in :=
metric_space.converges_to_seq_constant y
/- the completeness of the reals, "translated" from data.real.complete -/
definition cauchy (X : ) := metric_space.cauchy X
section
open pnat subtype
private definition pnat.succ (n : ) : + := tag (succ n) !succ_pos
private definition r_seq_of (X : ) : r_seq := λ n, X (elt_of n)
private lemma rate_of_cauchy_aux {X : } (H : cauchy X) :
∀ k : +, ∃ N : +, ∀ m n : +,
m ≥ N → n ≥ N → abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹ :=
take k : +,
have H1 : (rat.gt k⁻¹ (rat.of_num 0)), from !inv_pos,
have H2 : (of_rat k⁻¹ > of_rat (rat.of_num 0)), from !of_rat_lt_of_rat_of_lt H1,
obtain (N : ) (H : ∀ m n, m ≥ N → n ≥ N → abs (X m - X n) < of_rat k⁻¹), from H _ H2,
exists.intro (pnat.succ N)
(take m n : +,
assume Hm : m ≥ (pnat.succ N),
assume Hn : n ≥ (pnat.succ N),
have Hm' : elt_of m ≥ N, from nat.le.trans !le_succ Hm,
have Hn' : elt_of n ≥ N, from nat.le.trans !le_succ Hn,
show abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹, from le_of_lt (H _ _ Hm' Hn'))
private definition rate_of_cauchy {X : } (H : cauchy X) (k : +) : + :=
some (rate_of_cauchy_aux H k)
private lemma cauchy_with_rate_of_cauchy {X : } (H : cauchy X) :
cauchy_with_rate (r_seq_of X) (rate_of_cauchy H) :=
take k : +,
some_spec (rate_of_cauchy_aux H k)
private lemma converges_to_with_rate_of_cauchy {X : } (H : cauchy X) :
∃ l Nb, converges_to_with_rate (r_seq_of X) l Nb :=
begin
apply exists.intro,
apply exists.intro,
apply converges_to_with_rate_of_cauchy_with_rate,
exact cauchy_with_rate_of_cauchy H
end
theorem converges_seq_of_cauchy {X : } (H : cauchy X) : converges_seq X :=
obtain l Nb (conv : converges_to_with_rate (r_seq_of X) l Nb),
from converges_to_with_rate_of_cauchy H,
exists.intro l
(take ε : ,
suppose ε > 0,
obtain (k' : ) (Hn : 1 / succ k' < ε), from archimedean_small `ε > 0`,
let k : + := tag (succ k') !succ_pos,
N : + := Nb k in
have Hk : real.of_rat k⁻¹ < ε,
by rewrite [↑pnat.inv, of_rat_divide]; exact Hn,
exists.intro (elt_of N)
(take n : ,
assume Hn : n ≥ elt_of N,
let n' : + := tag n (nat.lt_of_lt_of_le (has_property N) Hn) in
have abs (X n - l) ≤ real.of_rat k⁻¹, from conv k n' Hn,
show abs (X n - l) < ε, from lt_of_le_of_lt this Hk))
open set
private definition exists_is_sup {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
∃ y, is_sup X y :=
let x := some (and.left H), b := some (and.right H) in
exists_is_sup_of_inh_of_bdd X x (some_spec (and.left H)) b (some_spec (and.right H))
private definition sup_aux {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :=
some (exists_is_sup H)
private definition sup_aux_spec {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
is_sup X (sup_aux H) :=
some_spec (exists_is_sup H)
definition sup (X : set ) : :=
if H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b) then sup_aux H else 0
proposition le_sup {x : } {X : set } (Hx : x ∈ X) {b : } (Hb : ∀ x, x ∈ X → x ≤ b) :
x ≤ sup X :=
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
from and.intro (exists.intro x Hx) (exists.intro b Hb),
by+ rewrite [↑sup, dif_pos H]; exact and.left (sup_aux_spec H) x Hx
proposition sup_le {X : set } (HX : ∃ x, x ∈ X) {b : } (Hb : ∀ x, x ∈ X → x ≤ b) :
sup X ≤ b :=
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
from and.intro HX (exists.intro b Hb),
by+ rewrite [↑sup, dif_pos H]; exact and.right (sup_aux_spec H) b Hb
private definition exists_is_inf {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :
∃ y, is_inf X y :=
let x := some (and.left H), b := some (and.right H) in
exists_is_inf_of_inh_of_bdd X x (some_spec (and.left H)) b (some_spec (and.right H))
private definition inf_aux {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :=
some (exists_is_inf H)
private definition inf_aux_spec {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :
is_inf X (inf_aux H) :=
some_spec (exists_is_inf H)
definition inf (X : set ) : :=
if H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x) then inf_aux H else 0
proposition inf_le {x : } {X : set } (Hx : x ∈ X) {b : } (Hb : ∀ x, x ∈ X → b ≤ x) :
inf X ≤ x :=
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
from and.intro (exists.intro x Hx) (exists.intro b Hb),
by+ rewrite [↑inf, dif_pos H]; exact and.left (inf_aux_spec H) x Hx
proposition le_inf {X : set } (HX : ∃ x, x ∈ X) {b : } (Hb : ∀ x, x ∈ X → b ≤ x) :
b ≤ inf X :=
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
from and.intro HX (exists.intro b Hb),
by+ rewrite [↑inf, dif_pos H]; exact and.right (inf_aux_spec H) b Hb
end
end nat
section continuous
-- this definition should be inherited from metric_space once a migrate is done.
definition continuous (f : ) :=
∀ x : , ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : , δ > 0 ∧ ∀ x' : , abs (x - x') < δ → abs (f x - f x') < ε
theorem pos_on_nbhd_of_cts_of_pos {f : } (Hf : continuous f) {b : } (Hb : f b > 0) :
∃ δ : , δ > 0 ∧ ∀ y, abs (b - y) < δ → f y > 0 :=
begin
let Hcont := Hf b Hb,
cases Hcont with δ Hδ,
existsi δ,
split,
exact and.left Hδ,
intro y Hy,
let Hy' := and.right Hδ y Hy,
let Hlt := sub_lt_of_abs_sub_lt_right Hy',
rewrite sub_self at Hlt,
assumption
end
theorem neg_on_nbhd_of_cts_of_neg {f : } (Hf : continuous f) {b : } (Hb : f b < 0) :
∃ δ : , δ > 0 ∧ ∀ y, abs (b - y) < δ → f y < 0 :=
begin
let Hcont := Hf b (neg_pos_of_neg Hb),
cases Hcont with δ Hδ,
existsi δ,
split,
exact and.left Hδ,
intro y Hy,
let Hy' := and.right Hδ y Hy,
let Hlt := sub_lt_of_abs_sub_lt_left Hy',
let Hlt' := lt_add_of_sub_lt_right _ _ _ Hlt,
rewrite [-sub_eq_add_neg at Hlt', sub_self at Hlt'],
assumption
end
theorem neg_continuous_of_continuous {f : } (Hcon : continuous f) : continuous (λ x, - f x) :=
begin
intros x ε Hε,
cases Hcon x Hε with δ Hδ,
cases Hδ with Hδ₁ Hδ₂,
existsi δ,
split,
assumption,
intros x' Hx',
let HD := Hδ₂ x' Hx',
rewrite [-abs_neg, neg_neg_sub_neg],
assumption
end
theorem translate_continuous_of_continuous {f : } (Hcon : continuous f) (a : ) :
continuous (λ x, (f x) + a) :=
begin
intros x ε Hε,
cases Hcon x Hε with δ Hδ,
cases Hδ with Hδ₁ Hδ₂,
existsi δ,
split,
assumption,
intros x' Hx',
rewrite [add_sub_comm, sub_self, add_zero],
apply Hδ₂,
assumption
end
end continuous
section inter_val
open set
private definition inter_sup (a b : ) (f : ) := sup {x | x < b ∧ f x < 0}
section
parameters {f : } (Hf : continuous f) {a b : } (Hab : a < b) (Ha : f a < 0) (Hb : f b > 0)
include Hf Ha Hb Hab
private theorem Hinh : ∃ x, x ∈ {x | x < b ∧ f x < 0} := exists.intro a (and.intro Hab Ha)
private theorem Hmem : ∀ x, x ∈ {x | x < b ∧ f x < 0} → x ≤ b := λ x Hx, le_of_lt (and.left Hx)
private theorem Hsupleb : inter_sup a b f ≤ b := sup_le (Hinh) Hmem
local notation 2 := of_num 1 + of_num 1
private theorem ex_delta_lt {x : } (Hx : f x < 0) (Hxb : x < b) : ∃ δ : , δ > 0 ∧ x + δ < b ∧ f (x + δ) < 0 :=
begin
let Hcont := neg_on_nbhd_of_cts_of_neg Hf Hx,
cases Hcont with δ Hδ,
{cases em (x + δ < b) with Haδ Haδ,
existsi δ / 2,
split,
{exact div_pos_of_pos_of_pos (and.left Hδ) two_pos},
split,
{apply lt.trans,
apply add_lt_add_left,
exact div_two_lt_of_pos (and.left Hδ),
exact Haδ},
{apply and.right Hδ,
rewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
exact div_two_lt_of_pos (and.left Hδ)},
existsi (b - x) / 2,
split,
{apply div_pos_of_pos_of_pos,
exact sub_pos_of_lt _ _ Hxb,
exact two_pos},
split,
{apply add_midpoint Hxb},
{apply and.right Hδ,
rewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt _ _ Hxb) two_pos)],
apply lt_of_lt_of_le,
apply div_two_lt_of_pos (sub_pos_of_lt _ _ Hxb),
apply sub_left_le_of_le_add,
apply le_of_not_gt Haδ}}
end
private lemma sup_near_b {δ : } (Hpos : 0 < δ)
(Hgeb : inter_sup a b f + δ / 2 ≥ b) : abs (inter_sup a b f - b) < δ :=
begin
apply abs_lt_of_lt_of_neg_lt,
apply sub_lt_left_of_lt_add,
apply lt_of_le_of_lt,
apply Hsupleb,
apply lt_add_of_pos_right Hpos,
rewrite neg_sub,
apply sub_lt_left_of_lt_add,
apply lt_of_le_of_lt,
apply Hgeb,
apply add_lt_add_left,
apply div_two_lt_of_pos Hpos
end
private lemma delta_of_lt (Hflt : f (inter_sup a b f) < 0) :
∃ δ : , δ > 0 ∧ inter_sup a b f + δ < b ∧ f (inter_sup a b f + δ) < 0 :=
if Hlt : inter_sup a b f < b then ex_delta_lt Hflt Hlt else
begin
let Heq := eq_of_le_of_ge Hsupleb (le_of_not_gt Hlt),
apply absurd Hflt,
apply not_lt_of_ge,
apply le_of_lt,
rewrite Heq,
exact Hb
end
private theorem sup_fn_interval_aux1 : f (inter_sup a b f) ≥ 0 :=
have ¬ f (inter_sup a b f) < 0, from
(suppose f (inter_sup a b f) < 0,
obtain δ Hδ, from delta_of_lt this,
have inter_sup a b f + δ ∈ {x | x < b ∧ f x < 0},
from and.intro (and.left (and.right Hδ)) (and.right (and.right Hδ)),
have ¬ inter_sup a b f < inter_sup a b f + δ,
from not_lt_of_ge (le_sup this Hmem),
show false, from this (lt_add_of_pos_right (and.left Hδ))),
le_of_not_gt this
private theorem sup_fn_interval_aux2 : f (inter_sup a b f) ≤ 0 :=
have ¬ f (inter_sup a b f) > 0, from
(assume Hfsup : f (inter_sup a b f) > 0,
obtain δ Hδ, from pos_on_nbhd_of_cts_of_pos Hf Hfsup,
have ∀ x, x ∈ {x | x < b ∧ f x < 0} → x ≤ inter_sup a b f - δ / 2, from
(take x, assume Hxset : x ∈ {x | x < b ∧ f x < 0},
have ¬ x > inter_sup a b f - δ / 2, from
(assume Hngt,
have Habs : abs (inter_sup a b f - x) < δ, begin
apply abs_lt_of_lt_of_neg_lt,
apply sub_lt_of_sub_lt,
apply gt.trans,
exact Hngt,
apply sub_lt_sub_left,
exact div_two_lt_of_pos (and.left Hδ),
rewrite neg_sub,
apply lt_of_le_of_lt,
rotate 1,
apply and.left Hδ,
apply sub_nonpos_of_le,
apply le_sup,
exact Hxset,
exact Hmem
end,
have f x > 0, from and.right Hδ x Habs,
show false, from (not_lt_of_gt this) (and.right Hxset)),
le_of_not_gt this),
have Hle : inter_sup a b f ≤ inter_sup a b f - δ / 2, from sup_le Hinh this,
show false, from not_le_of_gt
(sub_lt_of_pos _ (div_pos_of_pos_of_pos (and.left Hδ) (two_pos))) Hle),
le_of_not_gt this
private theorem sup_fn_interval : f (inter_sup a b f) = 0 :=
eq_of_le_of_ge sup_fn_interval_aux2 sup_fn_interval_aux1
private theorem intermediate_value_incr_aux2 : ∃ δ : , δ > 0 ∧ a + δ < b ∧ f (a + δ) < 0 :=
begin
let Hcont := neg_on_nbhd_of_cts_of_neg Hf Ha,
cases Hcont with δ Hδ,
{cases em (a + δ < b) with Haδ Haδ,
existsi δ / 2,
split,
{exact div_pos_of_pos_of_pos (and.left Hδ) two_pos},
split,
{apply lt.trans,
apply add_lt_add_left,
exact div_two_lt_of_pos (and.left Hδ),
exact Haδ},
{apply and.right Hδ,
rewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
exact div_two_lt_of_pos (and.left Hδ)},
existsi (b - a) / 2,
split,
{apply div_pos_of_pos_of_pos,
exact sub_pos_of_lt _ _ Hab,
exact two_pos},
split,
{apply add_midpoint Hab},
{apply and.right Hδ,
rewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt _ _ Hab) two_pos)],
apply lt_of_lt_of_le,
apply div_two_lt_of_pos (sub_pos_of_lt _ _ Hab),
apply sub_left_le_of_le_add,
apply le_of_not_gt Haδ}}
end
theorem intermediate_value_incr_zero : ∃ c, a < c ∧ c < b ∧ f c = 0 :=
begin
existsi inter_sup a b f,
split,
{cases intermediate_value_incr_aux2 with δ Hδ,
apply lt_of_lt_of_le,
apply lt_add_of_pos_right,
exact and.left Hδ,
apply le_sup,
exact and.right Hδ,
intro x Hx,
apply le_of_lt,
exact and.left Hx},
split,
{cases pos_on_nbhd_of_cts_of_pos Hf Hb with δ Hδ,
apply lt_of_le_of_lt,
rotate 1,
apply sub_lt_of_pos,
exact and.left Hδ,
rotate_right 1,
apply sup_le,
exact exists.intro a (and.intro Hab Ha),
intro x Hx,
apply le_of_not_gt,
intro Hxgt,
have Hxgt' : b - x < δ, from sub_lt_of_sub_lt _ _ _ Hxgt,
rewrite -(abs_of_pos (sub_pos_of_lt _ _ (and.left Hx))) at Hxgt',
let Hxgt'' := and.right Hδ _ Hxgt',
exact not_lt_of_ge (le_of_lt Hxgt'') (and.right Hx)},
{exact sup_fn_interval}
end
end
theorem intermediate_value_decr_zero {f : } (Hf : continuous f) {a b : } (Hab : a < b)
(Ha : f a > 0) (Hb : f b < 0) : ∃ c, a < c ∧ c < b ∧ f c = 0 :=
begin
have Ha' : - f a < 0, from neg_neg_of_pos Ha,
have Hb' : - f b > 0, from neg_pos_of_neg Hb,
have Hcon : continuous (λ x, - f x), from neg_continuous_of_continuous Hf,
let Hiv := intermediate_value_incr_zero Hcon Hab Ha' Hb',
cases Hiv with c Hc,
existsi c,
split,
exact and.left Hc,
split,
exact and.left (and.right Hc),
apply eq_zero_of_neg_eq_zero,
apply and.right (and.right Hc)
end
theorem intermediate_value_incr {f : } (Hf : continuous f) {a b : } (Hab : a < b) {v : }
(Hav : f a < v) (Hbv : f b > v) : ∃ c, a < c ∧ c < b ∧ f c = v :=
have Hav' : f a - v < 0, from sub_neg_of_lt _ _ Hav,
have Hbv' : f b - v > 0, from sub_pos_of_lt _ _ Hbv,
have Hcon : continuous (λ x, f x - v), from translate_continuous_of_continuous Hf _,
have Hiv : ∃ c, a < c ∧ c < b ∧ f c - v = 0, from intermediate_value_incr_zero Hcon Hab Hav' Hbv',
obtain c Hc, from Hiv,
exists.intro c
(and.intro (and.left Hc) (and.intro (and.left (and.right Hc)) (eq_of_sub_eq_zero (and.right (and.right Hc)))))
theorem intermediate_value_decr {f : } (Hf : continuous f) {a b : } (Hab : a < b) {v : }
(Hav : f a > v) (Hbv : f b < v) : ∃ c, a < c ∧ c < b ∧ f c = v :=
have Hav' : f a - v > 0, from sub_pos_of_lt _ _ Hav,
have Hbv' : f b - v < 0, from sub_neg_of_lt _ _ Hbv,
have Hcon : continuous (λ x, f x - v), from translate_continuous_of_continuous Hf _,
have Hiv : ∃ c, a < c ∧ c < b ∧ f c - v = 0, from intermediate_value_decr_zero Hcon Hab Hav' Hbv',
obtain c Hc, from Hiv,
exists.intro c
(and.intro (and.left Hc) (and.intro (and.left (and.right Hc)) (eq_of_sub_eq_zero (and.right (and.right Hc)))))
end inter_val
/-
proposition converges_to_at_unique {f : M → N} {y₁ y₂ : N} {x : M}
(H₁ : f ⟶ y₁ '[at x]) (H₂ : f ⟶ y₂ '[at x]) : y₁ = y₂ :=
eq_of_forall_dist_le
(take ε, suppose ε > 0,
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
obtain δ₁ [(δ₁pos : δ₁ > 0) (Hδ₁ : ∀ x', x ≠ x' ∧ dist x x' < δ₁ → dist (f x') y₁ < ε / 2)],
from H₁ e2pos,
obtain δ₂ [(δ₂pos : δ₂ > 0) (Hδ₂ : ∀ x', x ≠ x' ∧ dist x x' < δ₂ → dist (f x') y₂ < ε / 2)],
from H₂ e2pos,
let δ := min δ₁ δ₂ in
have δ > 0, from lt_min δ₁pos δ₂pos,
-/
end real