456 lines
14 KiB
Text
456 lines
14 KiB
Text
/-
|
||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
||
-/
|
||
prelude
|
||
import init.datatypes init.reserved_notation
|
||
|
||
-- implication
|
||
-- -----------
|
||
|
||
definition trivial := true.intro
|
||
|
||
definition not (a : Prop) := a → false
|
||
prefix `¬` := not
|
||
|
||
definition absurd {a : Prop} {b : Type} (H1 : a) (H2 : ¬a) : b :=
|
||
false.rec b (H2 H1)
|
||
|
||
-- not
|
||
-- ---
|
||
|
||
theorem not_false : ¬false :=
|
||
assume H : false, H
|
||
|
||
-- eq
|
||
-- --
|
||
|
||
notation a = b := eq a b
|
||
definition rfl {A : Type} {a : A} := eq.refl a
|
||
|
||
-- proof irrelevance is built in
|
||
theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ :=
|
||
rfl
|
||
|
||
namespace eq
|
||
variables {A : Type}
|
||
variables {a b c a': A}
|
||
|
||
theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b :=
|
||
rec H₂ H₁
|
||
|
||
theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
|
||
subst H₂ H₁
|
||
|
||
definition symm (H : a = b) : b = a :=
|
||
subst H (refl a)
|
||
|
||
namespace ops
|
||
notation H `⁻¹` := symm H --input with \sy or \-1 or \inv
|
||
notation H1 ⬝ H2 := trans H1 H2
|
||
notation H1 ▸ H2 := subst H1 H2
|
||
end ops
|
||
|
||
variable {p : Prop}
|
||
open ops
|
||
|
||
theorem true_elim (H : p = true) : p :=
|
||
H⁻¹ ▸ trivial
|
||
|
||
theorem false_elim (H : p = false) : ¬p :=
|
||
assume Hp, H ▸ Hp
|
||
end eq
|
||
|
||
calc_subst eq.subst
|
||
calc_refl eq.refl
|
||
calc_trans eq.trans
|
||
calc_symm eq.symm
|
||
|
||
-- ne
|
||
-- --
|
||
|
||
definition ne {A : Type} (a b : A) := ¬(a = b)
|
||
notation a ≠ b := ne a b
|
||
|
||
namespace ne
|
||
open eq.ops
|
||
variable {A : Type}
|
||
variables {a b : A}
|
||
|
||
theorem intro : (a = b → false) → a ≠ b :=
|
||
assume H, H
|
||
|
||
theorem elim : a ≠ b → a = b → false :=
|
||
assume H₁ H₂, H₁ H₂
|
||
|
||
theorem irrefl : a ≠ a → false :=
|
||
assume H, H rfl
|
||
|
||
theorem symm : a ≠ b → b ≠ a :=
|
||
assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹)
|
||
end ne
|
||
|
||
section
|
||
open eq.ops
|
||
variables {A : Type} {a b c : A}
|
||
|
||
theorem false.of_ne : a ≠ a → false :=
|
||
assume H, H rfl
|
||
|
||
theorem ne.of_eq_of_ne : a = b → b ≠ c → a ≠ c :=
|
||
assume H₁ H₂, H₁⁻¹ ▸ H₂
|
||
|
||
theorem ne.of_ne_of_eq : a ≠ b → b = c → a ≠ c :=
|
||
assume H₁ H₂, H₂ ▸ H₁
|
||
end
|
||
|
||
calc_trans ne.of_eq_of_ne
|
||
calc_trans ne.of_ne_of_eq
|
||
|
||
infixl `==`:50 := heq
|
||
|
||
namespace heq
|
||
universe variable u
|
||
variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C}
|
||
|
||
definition to_eq (H : a == a') : a = a' :=
|
||
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from
|
||
λ Ht, eq.refl (eq.rec_on Ht a),
|
||
heq.rec_on H H₁ (eq.refl A)
|
||
|
||
definition elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b) (H₂ : P a) : P b :=
|
||
eq.rec_on (to_eq H₁) H₂
|
||
|
||
theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b :=
|
||
rec_on H₁ H₂
|
||
|
||
theorem symm (H : a == b) : b == a :=
|
||
rec_on H (refl a)
|
||
|
||
theorem of_eq (H : a = a') : a == a' :=
|
||
eq.subst H (refl a)
|
||
|
||
theorem trans (H₁ : a == b) (H₂ : b == c) : a == c :=
|
||
subst H₂ H₁
|
||
|
||
theorem of_heq_of_eq (H₁ : a == b) (H₂ : b = b') : a == b' :=
|
||
trans H₁ (of_eq H₂)
|
||
|
||
theorem of_eq_of_heq (H₁ : a = a') (H₂ : a' == b) : a == b :=
|
||
trans (of_eq H₁) H₂
|
||
|
||
theorem true_elim {a : Prop} (H : a == true) : a :=
|
||
eq.true_elim (heq.to_eq H)
|
||
end heq
|
||
|
||
calc_trans heq.trans
|
||
calc_trans heq.of_heq_of_eq
|
||
calc_trans heq.of_eq_of_heq
|
||
calc_symm heq.symm
|
||
|
||
-- and
|
||
-- ---
|
||
|
||
notation a /\ b := and a b
|
||
notation a ∧ b := and a b
|
||
|
||
variables {a b c d : Prop}
|
||
|
||
namespace and
|
||
theorem elim (H₁ : a ∧ b) (H₂ : a → b → c) : c :=
|
||
rec H₂ H₁
|
||
|
||
definition not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) :=
|
||
assume H : a ∧ b, absurd (elim_left H) Hna
|
||
|
||
definition not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) :=
|
||
assume H : a ∧ b, absurd (elim_right H) Hnb
|
||
end and
|
||
|
||
-- or
|
||
-- --
|
||
notation a `\/` b := or a b
|
||
notation a ∨ b := or a b
|
||
|
||
namespace or
|
||
definition inl (Ha : a) : a ∨ b :=
|
||
intro_left b Ha
|
||
|
||
definition inr (Hb : b) : a ∨ b :=
|
||
intro_right a Hb
|
||
|
||
theorem elim (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → c) : c :=
|
||
rec H₂ H₃ H₁
|
||
|
||
definition not_intro (Hna : ¬a) (Hnb : ¬b) : ¬(a ∨ b) :=
|
||
assume H : a ∨ b, or.rec_on H
|
||
(assume Ha, absurd Ha Hna)
|
||
(assume Hb, absurd Hb Hnb)
|
||
end or
|
||
|
||
-- iff
|
||
-- ---
|
||
definition iff (a b : Prop) := (a → b) ∧ (b → a)
|
||
|
||
notation a <-> b := iff a b
|
||
notation a ↔ b := iff a b
|
||
|
||
namespace iff
|
||
definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b :=
|
||
and.intro H₁ H₂
|
||
|
||
definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c :=
|
||
and.rec H₁ H₂
|
||
|
||
definition elim_left (H : a ↔ b) : a → b :=
|
||
elim (assume H₁ H₂, H₁) H
|
||
|
||
definition mp := @elim_left
|
||
|
||
definition elim_right (H : a ↔ b) : b → a :=
|
||
elim (assume H₁ H₂, H₂) H
|
||
|
||
definition flip_sign (H₁ : a ↔ b) : ¬a ↔ ¬b :=
|
||
intro
|
||
(assume (Hna : ¬ a) (Hb : b), absurd (elim_right H₁ Hb) Hna)
|
||
(assume (Hnb : ¬ b) (Ha : a), absurd (elim_left H₁ Ha) Hnb)
|
||
|
||
definition refl (a : Prop) : a ↔ a :=
|
||
intro (assume H, H) (assume H, H)
|
||
|
||
definition rfl {a : Prop} : a ↔ a :=
|
||
refl a
|
||
|
||
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
|
||
intro
|
||
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
|
||
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
|
||
|
||
theorem symm (H : a ↔ b) : b ↔ a :=
|
||
intro
|
||
(assume Hb, elim_right H Hb)
|
||
(assume Ha, elim_left H Ha)
|
||
|
||
theorem true_elim (H : a ↔ true) : a :=
|
||
mp (symm H) trivial
|
||
|
||
theorem false_elim (H : a ↔ false) : ¬a :=
|
||
assume Ha : a, mp H Ha
|
||
|
||
open eq.ops
|
||
theorem of_eq {a b : Prop} (H : a = b) : a ↔ b :=
|
||
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
|
||
end iff
|
||
|
||
calc_refl iff.refl
|
||
calc_trans iff.trans
|
||
|
||
inductive Exists {A : Type} (P : A → Prop) : Prop :=
|
||
intro : ∀ (a : A), P a → Exists P
|
||
|
||
definition exists_intro := @Exists.intro
|
||
|
||
notation `exists` binders `,` r:(scoped P, Exists P) := r
|
||
notation `∃` binders `,` r:(scoped P, Exists P) := r
|
||
|
||
theorem exists_elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B :=
|
||
Exists.rec H2 H1
|
||
|
||
inductive decidable [class] (p : Prop) : Type :=
|
||
inl : p → decidable p,
|
||
inr : ¬p → decidable p
|
||
|
||
definition true.decidable [instance] : decidable true :=
|
||
decidable.inl trivial
|
||
|
||
definition false.decidable [instance] : decidable false :=
|
||
decidable.inr not_false
|
||
|
||
namespace decidable
|
||
variables {p q : Prop}
|
||
|
||
definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3)
|
||
: rec_on H H1 H2 :=
|
||
rec_on H (λh, H4) (λh, !false.rec (h H3))
|
||
|
||
definition rec_on_false [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : ¬p) (H4 : H2 H3)
|
||
: rec_on H H1 H2 :=
|
||
rec_on H (λh, false.rec _ (H3 h)) (λh, H4)
|
||
|
||
definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q :=
|
||
rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
|
||
|
||
theorem em (p : Prop) [H : decidable p] : p ∨ ¬p :=
|
||
by_cases (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp)
|
||
|
||
theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p :=
|
||
by_cases
|
||
(assume H1 : p, H1)
|
||
(assume H1 : ¬p, false.rec _ (H H1))
|
||
|
||
definition decidable_iff_equiv (Hp : decidable p) (H : p ↔ q) : decidable q :=
|
||
rec_on Hp
|
||
(assume Hp : p, inl (iff.elim_left H Hp))
|
||
(assume Hnp : ¬p, inr (iff.elim_left (iff.flip_sign H) Hnp))
|
||
|
||
definition decidable_eq_equiv (Hp : decidable p) (H : p = q) : decidable q :=
|
||
decidable_iff_equiv Hp (iff.of_eq H)
|
||
end decidable
|
||
|
||
section
|
||
variables {p q : Prop}
|
||
open decidable (rec_on inl inr)
|
||
|
||
definition and.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ∧ q) :=
|
||
rec_on Hp
|
||
(assume Hp : p, rec_on Hq
|
||
(assume Hq : q, inl (and.intro Hp Hq))
|
||
(assume Hnq : ¬q, inr (and.not_right p Hnq)))
|
||
(assume Hnp : ¬p, inr (and.not_left q Hnp))
|
||
|
||
definition or.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ∨ q) :=
|
||
rec_on Hp
|
||
(assume Hp : p, inl (or.inl Hp))
|
||
(assume Hnp : ¬p, rec_on Hq
|
||
(assume Hq : q, inl (or.inr Hq))
|
||
(assume Hnq : ¬q, inr (or.not_intro Hnp Hnq)))
|
||
|
||
definition not.decidable [instance] (Hp : decidable p) : decidable (¬p) :=
|
||
rec_on Hp
|
||
(assume Hp, inr (λ Hnp, absurd Hp Hnp))
|
||
(assume Hnp, inl Hnp)
|
||
|
||
definition implies.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p → q) :=
|
||
rec_on Hp
|
||
(assume Hp : p, rec_on Hq
|
||
(assume Hq : q, inl (assume H, Hq))
|
||
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
|
||
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
|
||
|
||
definition iff.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ↔ q) := _
|
||
end
|
||
|
||
definition decidable_pred {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
|
||
definition decidable_rel {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
|
||
definition decidable_eq (A : Type) := decidable_rel (@eq A)
|
||
|
||
inductive inhabited [class] (A : Type) : Type :=
|
||
mk : A → inhabited A
|
||
|
||
namespace inhabited
|
||
|
||
protected definition destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
|
||
inhabited.rec H2 H1
|
||
|
||
definition Prop_inhabited [instance] : inhabited Prop :=
|
||
mk true
|
||
|
||
definition fun_inhabited [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) :=
|
||
destruct H (λb, mk (λa, b))
|
||
|
||
definition dfun_inhabited [instance] (A : Type) {B : A → Type} (H : Πx, inhabited (B x)) :
|
||
inhabited (Πx, B x) :=
|
||
mk (λa, destruct (H a) (λb, b))
|
||
|
||
definition default (A : Type) [H : inhabited A] : A := destruct H (take a, a)
|
||
|
||
end inhabited
|
||
|
||
inductive nonempty [class] (A : Type) : Prop :=
|
||
intro : A → nonempty A
|
||
|
||
namespace nonempty
|
||
protected definition elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B :=
|
||
rec H2 H1
|
||
|
||
theorem inhabited_imp_nonempty [instance] {A : Type} (H : inhabited A) : nonempty A :=
|
||
intro (inhabited.default A)
|
||
end nonempty
|
||
|
||
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
|
||
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
|
||
|
||
definition if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t :=
|
||
decidable.rec
|
||
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e))
|
||
(λ Hnc : ¬c, absurd Hc Hnc)
|
||
H
|
||
|
||
definition if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e :=
|
||
decidable.rec
|
||
(λ Hc : c, absurd Hc Hnc)
|
||
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
|
||
H
|
||
|
||
definition if_t_t (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t :=
|
||
decidable.rec
|
||
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
|
||
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
|
||
H
|
||
|
||
definition if_true {A : Type} (t e : A) : (if true then t else e) = t :=
|
||
if_pos trivial
|
||
|
||
definition if_false {A : Type} (t e : A) : (if false then t else e) = e :=
|
||
if_neg not_false
|
||
|
||
theorem if_cond_congr {c₁ c₂ : Prop} [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) {A : Type} (t e : A)
|
||
: (if c₁ then t else e) = (if c₂ then t else e) :=
|
||
decidable.rec_on H₁
|
||
(λ Hc₁ : c₁, decidable.rec_on H₂
|
||
(λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹)
|
||
(λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂))
|
||
(λ Hnc₁ : ¬c₁, decidable.rec_on H₂
|
||
(λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁)
|
||
(λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹))
|
||
|
||
theorem if_congr_aux {c₁ c₂ : Prop} [H₁ : decidable c₁] [H₂ : decidable c₂] {A : Type} {t₁ t₂ e₁ e₂ : A}
|
||
(Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
||
(if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) :=
|
||
Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁)
|
||
|
||
theorem if_congr {c₁ c₂ : Prop} [H₁ : decidable c₁] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
||
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable.decidable_iff_equiv H₁ Hc) A t₂ e₂) :=
|
||
have H2 [visible] : decidable c₂, from (decidable.decidable_iff_equiv H₁ Hc),
|
||
if_congr_aux Hc Ht He
|
||
|
||
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
|
||
-- to the branches
|
||
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
|
||
decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc)
|
||
|
||
definition dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = t Hc :=
|
||
decidable.rec
|
||
(λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e))
|
||
(λ Hnc : ¬c, absurd Hc Hnc)
|
||
H
|
||
|
||
definition dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = e Hnc :=
|
||
decidable.rec
|
||
(λ Hc : c, absurd Hc Hnc)
|
||
(λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e))
|
||
H
|
||
|
||
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
|
||
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
|
||
rfl
|
||
|
||
definition is_true (c : Prop) [H : decidable c] : Prop :=
|
||
if c then true else false
|
||
|
||
definition is_false (c : Prop) [H : decidable c] : Prop :=
|
||
if c then false else true
|
||
|
||
theorem of_is_true {c : Prop} [H₁ : decidable c] (H₂ : is_true c) : c :=
|
||
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, !false.rec (if_neg Hnc ▸ H₂))
|
||
|
||
theorem not_of_not_is_true {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_true c) : ¬ c :=
|
||
decidable.rec_on H₁ (λ Hc, absurd true.intro (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
|
||
|
||
theorem not_of_is_false {c : Prop} [H₁ : decidable c] (H₂ : is_false c) : ¬ c :=
|
||
decidable.rec_on H₁ (λ Hc, !false.rec (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
|
||
|
||
theorem of_not_is_false {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_false c) : c :=
|
||
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, absurd true.intro (if_neg Hnc ▸ H₂))
|