lean2/library/init/logic.lean

456 lines
14 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
-/
prelude
import init.datatypes init.reserved_notation
-- implication
-- -----------
definition trivial := true.intro
definition not (a : Prop) := a → false
prefix `¬` := not
definition absurd {a : Prop} {b : Type} (H1 : a) (H2 : ¬a) : b :=
false.rec b (H2 H1)
-- not
-- ---
theorem not_false : ¬false :=
assume H : false, H
-- eq
-- --
notation a = b := eq a b
definition rfl {A : Type} {a : A} := eq.refl a
-- proof irrelevance is built in
theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ :=
rfl
namespace eq
variables {A : Type}
variables {a b c a': A}
theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b :=
rec H₂ H₁
theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
subst H₂ H₁
definition symm (H : a = b) : b = a :=
subst H (refl a)
namespace ops
notation H `⁻¹` := symm H --input with \sy or \-1 or \inv
notation H1 ⬝ H2 := trans H1 H2
notation H1 ▸ H2 := subst H1 H2
end ops
variable {p : Prop}
open ops
theorem true_elim (H : p = true) : p :=
H⁻¹ ▸ trivial
theorem false_elim (H : p = false) : ¬p :=
assume Hp, H ▸ Hp
end eq
calc_subst eq.subst
calc_refl eq.refl
calc_trans eq.trans
calc_symm eq.symm
-- ne
-- --
definition ne {A : Type} (a b : A) := ¬(a = b)
notation a ≠ b := ne a b
namespace ne
open eq.ops
variable {A : Type}
variables {a b : A}
theorem intro : (a = b → false) → a ≠ b :=
assume H, H
theorem elim : a ≠ b → a = b → false :=
assume H₁ H₂, H₁ H₂
theorem irrefl : a ≠ a → false :=
assume H, H rfl
theorem symm : a ≠ b → b ≠ a :=
assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹)
end ne
section
open eq.ops
variables {A : Type} {a b c : A}
theorem false.of_ne : a ≠ a → false :=
assume H, H rfl
theorem ne.of_eq_of_ne : a = b → b ≠ c → a ≠ c :=
assume H₁ H₂, H₁⁻¹ ▸ H₂
theorem ne.of_ne_of_eq : a ≠ b → b = c → a ≠ c :=
assume H₁ H₂, H₂ ▸ H₁
end
calc_trans ne.of_eq_of_ne
calc_trans ne.of_ne_of_eq
infixl `==`:50 := heq
namespace heq
universe variable u
variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C}
definition to_eq (H : a == a') : a = a' :=
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from
λ Ht, eq.refl (eq.rec_on Ht a),
heq.rec_on H H₁ (eq.refl A)
definition elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b) (H₂ : P a) : P b :=
eq.rec_on (to_eq H₁) H₂
theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b :=
rec_on H₁ H₂
theorem symm (H : a == b) : b == a :=
rec_on H (refl a)
theorem of_eq (H : a = a') : a == a' :=
eq.subst H (refl a)
theorem trans (H₁ : a == b) (H₂ : b == c) : a == c :=
subst H₂ H₁
theorem of_heq_of_eq (H₁ : a == b) (H₂ : b = b') : a == b' :=
trans H₁ (of_eq H₂)
theorem of_eq_of_heq (H₁ : a = a') (H₂ : a' == b) : a == b :=
trans (of_eq H₁) H₂
theorem true_elim {a : Prop} (H : a == true) : a :=
eq.true_elim (heq.to_eq H)
end heq
calc_trans heq.trans
calc_trans heq.of_heq_of_eq
calc_trans heq.of_eq_of_heq
calc_symm heq.symm
-- and
-- ---
notation a /\ b := and a b
notation a ∧ b := and a b
variables {a b c d : Prop}
namespace and
theorem elim (H₁ : a ∧ b) (H₂ : a → b → c) : c :=
rec H₂ H₁
definition not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) :=
assume H : a ∧ b, absurd (elim_left H) Hna
definition not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) :=
assume H : a ∧ b, absurd (elim_right H) Hnb
end and
-- or
-- --
notation a `\/` b := or a b
notation a b := or a b
namespace or
definition inl (Ha : a) : a b :=
intro_left b Ha
definition inr (Hb : b) : a b :=
intro_right a Hb
theorem elim (H₁ : a b) (H₂ : a → c) (H₃ : b → c) : c :=
rec H₂ H₃ H₁
definition not_intro (Hna : ¬a) (Hnb : ¬b) : ¬(a b) :=
assume H : a b, or.rec_on H
(assume Ha, absurd Ha Hna)
(assume Hb, absurd Hb Hnb)
end or
-- iff
-- ---
definition iff (a b : Prop) := (a → b) ∧ (b → a)
notation a <-> b := iff a b
notation a ↔ b := iff a b
namespace iff
definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b :=
and.intro H₁ H₂
definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c :=
and.rec H₁ H₂
definition elim_left (H : a ↔ b) : a → b :=
elim (assume H₁ H₂, H₁) H
definition mp := @elim_left
definition elim_right (H : a ↔ b) : b → a :=
elim (assume H₁ H₂, H₂) H
definition flip_sign (H₁ : a ↔ b) : ¬a ↔ ¬b :=
intro
(assume (Hna : ¬ a) (Hb : b), absurd (elim_right H₁ Hb) Hna)
(assume (Hnb : ¬ b) (Ha : a), absurd (elim_left H₁ Ha) Hnb)
definition refl (a : Prop) : a ↔ a :=
intro (assume H, H) (assume H, H)
definition rfl {a : Prop} : a ↔ a :=
refl a
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
intro
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
theorem symm (H : a ↔ b) : b ↔ a :=
intro
(assume Hb, elim_right H Hb)
(assume Ha, elim_left H Ha)
theorem true_elim (H : a ↔ true) : a :=
mp (symm H) trivial
theorem false_elim (H : a ↔ false) : ¬a :=
assume Ha : a, mp H Ha
open eq.ops
theorem of_eq {a b : Prop} (H : a = b) : a ↔ b :=
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
end iff
calc_refl iff.refl
calc_trans iff.trans
inductive Exists {A : Type} (P : A → Prop) : Prop :=
intro : ∀ (a : A), P a → Exists P
definition exists_intro := @Exists.intro
notation `exists` binders `,` r:(scoped P, Exists P) := r
notation `∃` binders `,` r:(scoped P, Exists P) := r
theorem exists_elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B :=
Exists.rec H2 H1
inductive decidable [class] (p : Prop) : Type :=
inl : p → decidable p,
inr : ¬p → decidable p
definition true.decidable [instance] : decidable true :=
decidable.inl trivial
definition false.decidable [instance] : decidable false :=
decidable.inr not_false
namespace decidable
variables {p q : Prop}
definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3)
: rec_on H H1 H2 :=
rec_on H (λh, H4) (λh, !false.rec (h H3))
definition rec_on_false [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : ¬p) (H4 : H2 H3)
: rec_on H H1 H2 :=
rec_on H (λh, false.rec _ (H3 h)) (λh, H4)
definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q :=
rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
theorem em (p : Prop) [H : decidable p] : p ¬p :=
by_cases (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp)
theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p :=
by_cases
(assume H1 : p, H1)
(assume H1 : ¬p, false.rec _ (H H1))
definition decidable_iff_equiv (Hp : decidable p) (H : p ↔ q) : decidable q :=
rec_on Hp
(assume Hp : p, inl (iff.elim_left H Hp))
(assume Hnp : ¬p, inr (iff.elim_left (iff.flip_sign H) Hnp))
definition decidable_eq_equiv (Hp : decidable p) (H : p = q) : decidable q :=
decidable_iff_equiv Hp (iff.of_eq H)
end decidable
section
variables {p q : Prop}
open decidable (rec_on inl inr)
definition and.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ∧ q) :=
rec_on Hp
(assume Hp : p, rec_on Hq
(assume Hq : q, inl (and.intro Hp Hq))
(assume Hnq : ¬q, inr (and.not_right p Hnq)))
(assume Hnp : ¬p, inr (and.not_left q Hnp))
definition or.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p q) :=
rec_on Hp
(assume Hp : p, inl (or.inl Hp))
(assume Hnp : ¬p, rec_on Hq
(assume Hq : q, inl (or.inr Hq))
(assume Hnq : ¬q, inr (or.not_intro Hnp Hnq)))
definition not.decidable [instance] (Hp : decidable p) : decidable (¬p) :=
rec_on Hp
(assume Hp, inr (λ Hnp, absurd Hp Hnp))
(assume Hnp, inl Hnp)
definition implies.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p → q) :=
rec_on Hp
(assume Hp : p, rec_on Hq
(assume Hq : q, inl (assume H, Hq))
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
definition iff.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ↔ q) := _
end
definition decidable_pred {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
definition decidable_rel {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
definition decidable_eq (A : Type) := decidable_rel (@eq A)
inductive inhabited [class] (A : Type) : Type :=
mk : A → inhabited A
namespace inhabited
protected definition destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
inhabited.rec H2 H1
definition Prop_inhabited [instance] : inhabited Prop :=
mk true
definition fun_inhabited [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) :=
destruct H (λb, mk (λa, b))
definition dfun_inhabited [instance] (A : Type) {B : A → Type} (H : Πx, inhabited (B x)) :
inhabited (Πx, B x) :=
mk (λa, destruct (H a) (λb, b))
definition default (A : Type) [H : inhabited A] : A := destruct H (take a, a)
end inhabited
inductive nonempty [class] (A : Type) : Prop :=
intro : A → nonempty A
namespace nonempty
protected definition elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B :=
rec H2 H1
theorem inhabited_imp_nonempty [instance] {A : Type} (H : inhabited A) : nonempty A :=
intro (inhabited.default A)
end nonempty
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
definition if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t :=
decidable.rec
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e))
(λ Hnc : ¬c, absurd Hc Hnc)
H
definition if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e :=
decidable.rec
(λ Hc : c, absurd Hc Hnc)
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
H
definition if_t_t (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t :=
decidable.rec
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
H
definition if_true {A : Type} (t e : A) : (if true then t else e) = t :=
if_pos trivial
definition if_false {A : Type} (t e : A) : (if false then t else e) = e :=
if_neg not_false
theorem if_cond_congr {c₁ c₂ : Prop} [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) {A : Type} (t e : A)
: (if c₁ then t else e) = (if c₂ then t else e) :=
decidable.rec_on H₁
(λ Hc₁ : c₁, decidable.rec_on H₂
(λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹)
(λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂))
(λ Hnc₁ : ¬c₁, decidable.rec_on H₂
(λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁)
(λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹))
theorem if_congr_aux {c₁ c₂ : Prop} [H₁ : decidable c₁] [H₂ : decidable c₂] {A : Type} {t₁ t₂ e₁ e₂ : A}
(Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
(if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) :=
Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁)
theorem if_congr {c₁ c₂ : Prop} [H₁ : decidable c₁] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable.decidable_iff_equiv H₁ Hc) A t₂ e₂) :=
have H2 [visible] : decidable c₂, from (decidable.decidable_iff_equiv H₁ Hc),
if_congr_aux Hc Ht He
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
-- to the branches
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc)
definition dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = t Hc :=
decidable.rec
(λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e))
(λ Hnc : ¬c, absurd Hc Hnc)
H
definition dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = e Hnc :=
decidable.rec
(λ Hc : c, absurd Hc Hnc)
(λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e))
H
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
rfl
definition is_true (c : Prop) [H : decidable c] : Prop :=
if c then true else false
definition is_false (c : Prop) [H : decidable c] : Prop :=
if c then false else true
theorem of_is_true {c : Prop} [H₁ : decidable c] (H₂ : is_true c) : c :=
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, !false.rec (if_neg Hnc ▸ H₂))
theorem not_of_not_is_true {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_true c) : ¬ c :=
decidable.rec_on H₁ (λ Hc, absurd true.intro (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
theorem not_of_is_false {c : Prop} [H₁ : decidable c] (H₂ : is_false c) : ¬ c :=
decidable.rec_on H₁ (λ Hc, !false.rec (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
theorem of_not_is_false {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_false c) : c :=
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, absurd true.intro (if_neg Hnc ▸ H₂))