1047 lines
41 KiB
C++
1047 lines
41 KiB
C++
/*
|
|
Copyright (c) 2013 Microsoft Corporation.
|
|
Copyright (c) 2013 Carnegie Mellon University.
|
|
All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Author: Soonho Kong
|
|
*/
|
|
#include "kernel/abstract.h"
|
|
#include "kernel/builtin.h"
|
|
#include "kernel/context.h"
|
|
#include "kernel/environment.h"
|
|
#include "kernel/expr.h"
|
|
#include "kernel/replace.h"
|
|
#include "kernel/printer.h"
|
|
#include "library/basic_thms.h"
|
|
#include "library/type_inferer.h"
|
|
#include "library/rewriter/fo_match.h"
|
|
#include "library/rewriter/rewriter.h"
|
|
#include "library/rewriter/apply_rewriter_fn.h"
|
|
#include "util/buffer.h"
|
|
#include "util/trace.h"
|
|
|
|
using std::cout;
|
|
using std::endl;
|
|
using std::initializer_list;
|
|
using std::make_pair;
|
|
using std::ostream;
|
|
using std::pair;
|
|
|
|
namespace lean {
|
|
|
|
/**
|
|
\brief For a lambda term v = \f$(\lambda n : ty. body)\f$ and the rewriting result
|
|
for ty, it constructs a new rewriting result for v' = \f$(\lambda n : ty'.
|
|
body)\f$ with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v \f$(\lambda n : ty. body)\f$
|
|
\param result_ty rewriting result of ty -- pair of ty'
|
|
rewritten type of ty and pf_ty the proof of (ty = ty')
|
|
\return pair of v' = \f$(\lambda n : ty'. body)\f$, and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_lambda_type(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_ty) {
|
|
lean_assert(is_lambda(v));
|
|
type_inferer ti(env);
|
|
expr const & ty = abst_domain(v);
|
|
expr const & new_ty = result_ty.first;
|
|
expr const & ty_v = ti(v, ctx);
|
|
if (ty == new_ty) {
|
|
return make_pair(v, Refl(ty_v, v));
|
|
} else {
|
|
name const & n = abst_name(v);
|
|
expr const & body = abst_body(v);
|
|
expr const & pf_ty = result_ty.second;
|
|
expr const & new_v = mk_lambda(n, new_ty, body);
|
|
expr const & ty_ty = ti(ty, ctx);
|
|
lean_assert_eq(ty_ty, ti(new_ty, ctx)); // TODO(soonhok): generalize for hetreogeneous types
|
|
expr const & proof = Subst(ty_ty, ty, new_ty,
|
|
Fun({Const("T"), ty_ty},
|
|
mk_eq(v, mk_lambda(n, Const("T"), body))),
|
|
Refl(ty_v, v), pf_ty);
|
|
return make_pair(new_v, proof);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief For a lambda term v = \f$(\lambda n : ty. body)\f$ and the rewriting result
|
|
for body, it constructs a new rewriting result for v' = \f$(\lambda n : ty.
|
|
body')\f$ with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v \f$(\lambda n : ty. body)\f$
|
|
\param result_body rewriting result of body -- pair of \c body'
|
|
rewritten term of body and \c pf_body the proof of (body =
|
|
body')
|
|
\return pair of v' = \f$(\lambda n : ty. body')\f$, and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_lambda_body(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_body) {
|
|
lean_assert(is_lambda(v));
|
|
type_inferer ti(env);
|
|
expr const & body = abst_body(v);
|
|
expr const & new_body = result_body.first;
|
|
expr const & ty_v = ti(v, ctx);
|
|
if (body == new_body) {
|
|
return make_pair(v, Refl(ty_v, v));
|
|
} else {
|
|
name const & n = abst_name(v);
|
|
expr const & ty = abst_domain(v);
|
|
expr const & pf_body = result_body.second;
|
|
expr const & new_v = mk_lambda(n, ty, new_body);
|
|
expr const & ty_body = ti(body, extend(ctx, n, ty));
|
|
lean_assert_eq(ty_body, ti(new_body, ctx)); // TODO(soonhok): generalize for hetreogeneous types
|
|
expr const & proof = Subst(ty_body, body, new_body,
|
|
Fun({Const("e"), ty_body},
|
|
mk_eq(v, mk_lambda(n, ty, Const("e")))),
|
|
Refl(ty_v, v), pf_body);
|
|
return make_pair(new_v, proof);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief For a lambda term v = \f$(\lambda n : ty. body)\f$ and the rewriting
|
|
result for ty and body, it constructs a new rewriting result for v'
|
|
= \f$(\lambda n : ty'. body')\f$ with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v \f$(\lambda n : ty. body)\f$
|
|
\param result_ty rewriting result of ty -- pair of ty'
|
|
rewritten type of ty and pf_ty the proof of (ty = ty')
|
|
\param result_body rewriting result of body -- pair of body'
|
|
rewritten term of body and \c pf_body the proof of (body =
|
|
body')
|
|
\return pair of v' = \f$(\lambda n : ty'. body')\f$, and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_lambda(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_ty, pair<expr, expr> const & result_body) {
|
|
lean_assert(is_lambda(v));
|
|
type_inferer ti(env);
|
|
name const & n = abst_name(v);
|
|
expr const & ty = abst_domain(v);
|
|
expr const & body = abst_body(v);
|
|
expr const & new_ty = result_ty.first;
|
|
expr const & pf_ty = result_ty.second;
|
|
expr const & new_body = result_body.first;
|
|
expr const & pf_body = result_body.second;
|
|
expr const & ty_ty = ti(ty, ctx);
|
|
expr const & ty_body = ti(body, ctx);
|
|
expr const & ty_v = ti(v, ctx);
|
|
expr const & new_v1 = mk_lambda(n, new_ty, body);
|
|
expr const & ty_new_v1 = ti(v, ctx);
|
|
expr const & new_v2 = mk_lambda(n, new_ty, new_body);
|
|
// proof1 : v = new_v1
|
|
expr const & proof1 = Subst(ty_ty, ty, new_ty,
|
|
Fun({Const("T"), ty_ty},
|
|
mk_eq(v, mk_lambda(n, Const("T"), body))),
|
|
Refl(ty_v, v),
|
|
pf_ty);
|
|
// proof2 : new_v1 = new_v2
|
|
expr const & proof2 = Subst(ty_body, body, new_body,
|
|
Fun({Const("e"), ty_body},
|
|
mk_eq(new_v1, mk_lambda(n, new_ty, Const("e")))),
|
|
Refl(ty_new_v1, new_v1),
|
|
pf_body);
|
|
expr const & proof = Trans(ty_v, v, new_v1, new_v2, proof1, proof2);
|
|
return make_pair(new_v2, proof);
|
|
}
|
|
|
|
/**
|
|
\brief For a Pi term v = \f$(\Pi n : ty. body)\f$ and the rewriting
|
|
result for ty, it constructs a new rewriting result for v'
|
|
= \f$(\Pi n : ty'. body)\f$ with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v \f$(\Pi n : ty. body)\f$
|
|
\param result_ty rewriting result of ty -- pair of ty'
|
|
rewritten type of ty and pf_ty the proof of (ty = ty')
|
|
\return pair of v' = \f$(\Pi n : ty'. body)\f$, and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_pi_type(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_ty) {
|
|
lean_assert(is_pi(v));
|
|
type_inferer ti(env);
|
|
name const & n = abst_name(v);
|
|
expr const & ty = abst_domain(v);
|
|
expr const & body = abst_body(v);
|
|
expr const & new_ty = result_ty.first;
|
|
expr const & pf = result_ty.second;
|
|
expr const & new_v = mk_pi(n, new_ty, body);
|
|
expr const & ty_ty = ti(ty, ctx);
|
|
expr const & ty_v = ti(v, ctx);
|
|
expr const & proof = Subst(ty_ty, ty, new_ty,
|
|
Fun({Const("T"), ty_ty},
|
|
mk_eq(v, mk_pi(n, Const("T"), body))),
|
|
Refl(ty_v, v),
|
|
pf);
|
|
return make_pair(new_v, proof);
|
|
}
|
|
|
|
/**
|
|
\brief For a Pi term v = \f$(\Pi n : ty. body)\f$ and the rewriting
|
|
result for body, it constructs a new rewriting result for v'
|
|
= \f$(\Pi n : ty. body')\f$ with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v \f$(\Pi n : ty. body)\f$
|
|
\param result_body rewriting result of body -- pair of body'
|
|
rewritten term of body and \c pf_body the proof of (body =
|
|
body')
|
|
\return pair of v' = \f$(\Pi n : ty. body')\f$, and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_pi_body(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_body) {
|
|
lean_assert(is_pi(v));
|
|
type_inferer ti(env);
|
|
name const & n = abst_name(v);
|
|
expr const & ty = abst_domain(v);
|
|
expr const & body = abst_body(v);
|
|
expr const & new_body = result_body.first;
|
|
expr const & pf = result_body.second;
|
|
expr const & new_v = mk_pi(n, ty, new_body);
|
|
expr const & ty_body = ti(body, extend(ctx, n, ty));
|
|
expr const & ty_v = ti(v, ctx);
|
|
expr const & proof = Subst(ty_body, body, new_body,
|
|
Fun({Const("e"), ty_body},
|
|
mk_eq(v, mk_pi(n, ty, Const("e")))),
|
|
Refl(ty_v, v),
|
|
pf);
|
|
return make_pair(new_v, proof);
|
|
}
|
|
|
|
/**
|
|
\brief For a Pi term v = \f$(\Pi n : ty. body)\f$ and the rewriting
|
|
result for ty and body, it constructs a new rewriting result for v'
|
|
= \f$(\Pi n : ty'. body')\f$ with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v \f$(\Pi n : ty. body)\f$
|
|
\param result_ty rewriting result of ty -- pair of ty'
|
|
rewritten type of ty and pf_ty the proof of (ty = ty')
|
|
\param result_body rewriting result of body -- pair of body'
|
|
rewritten term of body and \c pf_body the proof of (body =
|
|
body')
|
|
\return pair of v' = \f$(\Pi n : ty'. body')\f$, and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_pi(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_ty, pair<expr, expr> const & result_body) {
|
|
lean_assert(is_pi(v));
|
|
type_inferer ti(env);
|
|
name const & n = abst_name(v);
|
|
expr const & ty = abst_domain(v);
|
|
expr const & body = abst_body(v);
|
|
expr const & new_ty = result_ty.first;
|
|
expr const & pf_ty = result_ty.second;
|
|
expr const & new_body = result_body.first;
|
|
expr const & pf_body = result_body.second;
|
|
expr const & ty_ty = ti(ty, ctx);
|
|
expr const & ty_body = ti(body, ctx);
|
|
expr const & ty_v = ti(v, ctx);
|
|
expr const & new_v1 = mk_pi(n, new_ty, body);
|
|
expr const & ty_new_v1 = ti(v, ctx);
|
|
expr const & new_v2 = mk_pi(n, new_ty, new_body);
|
|
expr const & proof1 = Subst(ty_ty, ty, new_ty,
|
|
Fun({Const("T"), ty_ty},
|
|
mk_eq(v, mk_pi(n, Const("T"), body))),
|
|
Refl(ty_v, v),
|
|
pf_ty);
|
|
expr const & proof2 = Subst(ty_body, body, new_body,
|
|
Fun({Const("e"), ty_body},
|
|
mk_eq(new_v1, mk_pi(n, new_ty, Const("e")))),
|
|
Refl(ty_new_v1, new_v1),
|
|
pf_body);
|
|
expr const & proof = Trans(ty_v, v, new_v1, new_v2, proof1, proof2);
|
|
return make_pair(new_v2, proof);
|
|
}
|
|
|
|
/**
|
|
\brief For a Eq term v = (lhs = rhs) and the rewriting result for
|
|
lhs, it constructs a new rewriting result for v' = (lhs' = rhs)
|
|
with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v (lhs = rhs)
|
|
\param result_lhs rewriting result of lhs -- pair of lhs'
|
|
rewritten term of lhs and pf_lhs the proof of (lhs = lhs')
|
|
\return pair of v' = (lhs' = rhs), and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_eq_lhs(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_lhs) {
|
|
lean_assert(is_eq(v));
|
|
type_inferer ti(env);
|
|
expr const & lhs = eq_lhs(v);
|
|
expr const & rhs = eq_rhs(v);
|
|
expr const & new_lhs = result_lhs.first;
|
|
expr const & pf = result_lhs.second;
|
|
expr const & new_v = mk_eq(new_lhs, rhs);
|
|
expr const & ty_lhs = ti(lhs, ctx);
|
|
expr const & ty_v = ti(v, ctx);
|
|
expr const & proof = Subst(ty_lhs, lhs, new_lhs,
|
|
Fun({Const("x"), ty_lhs},
|
|
mk_eq(v, mk_eq(Const("x"), rhs))),
|
|
Refl(ty_v, v),
|
|
pf);
|
|
return make_pair(new_v, proof);
|
|
}
|
|
|
|
/**
|
|
\brief For a Eq term v = (lhs = rhs)and the rewriting
|
|
result for rhs, it constructs a new rewriting result for v'
|
|
= (lhs = rhs') with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v (lhs = rhs)
|
|
\param result_rhs rewriting result of rhs -- pair of rhs'
|
|
rewritten term of rhs and pf_rhs the proof of (rhs = rhs')
|
|
\return pair of v' = (lhs = rhs'), and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_eq_rhs(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_rhs) {
|
|
lean_assert(is_eq(v));
|
|
type_inferer ti(env);
|
|
expr const & lhs = eq_lhs(v);
|
|
expr const & rhs = eq_rhs(v);
|
|
expr const & new_rhs = result_rhs.first;
|
|
expr const & pf = result_rhs.second;
|
|
expr const & new_v = mk_eq(rhs, new_rhs);
|
|
expr const & ty_rhs = ti(rhs, ctx);
|
|
expr const & ty_v = ti(v, ctx);
|
|
expr const & proof = Subst(ty_rhs, rhs, new_rhs,
|
|
Fun({Const("x"), ty_rhs},
|
|
mk_eq(v, mk_eq(lhs, Const("x")))),
|
|
Refl(ty_v, v),
|
|
pf);
|
|
return make_pair(new_v, proof);
|
|
}
|
|
|
|
/**
|
|
\brief For a Eq term v = (lhs = rhs)and the rewriting result for
|
|
lhs and rhs, it constructs a new rewriting result for v' = (lhs' =
|
|
rhs') with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v (lhs = rhs)
|
|
\param result_lhs rewriting result of lhs -- pair of lhs'
|
|
rewritten term of lhs and pf_lhs the proof of (lhs = lhs')
|
|
\param result_rhs rewriting result of rhs -- pair of rhs'
|
|
rewritten term of rhs and pf_rhs the proof of (rhs = rhs')
|
|
\return pair of v' = (lhs' = rhs'), and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_eq(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_lhs, pair<expr, expr> const & result_rhs) {
|
|
lean_assert(is_eq(v));
|
|
type_inferer ti(env);
|
|
expr const & lhs = eq_lhs(v);
|
|
expr const & rhs = eq_rhs(v);
|
|
expr const & new_lhs = result_lhs.first;
|
|
expr const & pf_lhs = result_lhs.second;
|
|
expr const & new_rhs = result_rhs.first;
|
|
expr const & pf_rhs = result_rhs.second;
|
|
expr const & new_v1 = mk_eq(new_lhs, rhs);
|
|
expr const & new_v2 = mk_eq(new_lhs, new_rhs);
|
|
expr const & ty_lhs = ti(lhs, ctx);
|
|
expr const & ty_rhs = ti(rhs, ctx);
|
|
expr const & ty_v = ti(v, ctx);
|
|
expr const & ty_new_v1 = ti(new_v1, ctx);
|
|
expr const & proof1 = Subst(ty_lhs, lhs, new_lhs,
|
|
Fun({Const("x"), ty_lhs},
|
|
mk_eq(v, mk_eq(Const("x"), rhs))),
|
|
Refl(ty_v, v),
|
|
pf_lhs);
|
|
expr const & proof2 = Subst(ty_rhs, rhs, new_rhs,
|
|
Fun({Const("x"), ty_rhs},
|
|
mk_eq(v, mk_eq(lhs, Const("x")))),
|
|
Refl(ty_new_v1, new_v1),
|
|
pf_rhs);
|
|
expr const & proof = Trans(ty_v, v, new_v1, new_v2, proof1, proof2);
|
|
return make_pair(new_v2, proof);
|
|
}
|
|
|
|
/**
|
|
\brief For a lambda term v = (let n : ty = val in body) and the rewriting result
|
|
for ty, it constructs a new rewriting result for v' = (let n : ty'
|
|
= val in body) with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v (let n : ty = val in body)
|
|
\param result_ty rewriting result of ty -- pair of ty'
|
|
rewritten type of ty and \c pf_ty the proof of (ty = ty')
|
|
\return pair of v' = (let n : ty' = val in body), and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_let_type(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_ty) {
|
|
lean_assert(is_let(v));
|
|
type_inferer ti(env);
|
|
name const & n = let_name(v);
|
|
expr const & ty = let_type(v);
|
|
expr const & val = let_value(v);
|
|
expr const & body = let_body(v);
|
|
expr const & new_ty = result_ty.first;
|
|
expr const & pf = result_ty.second;
|
|
expr const & new_v = mk_let(n, new_ty, val, body);
|
|
expr const & ty_ty = ti(ty, ctx);
|
|
expr const & ty_v = ti(v, ctx);
|
|
expr const & proof = Subst(ty_ty, ty, new_ty,
|
|
Fun({Const("x"), ty_ty},
|
|
mk_eq(v, mk_let(n, Const("x"), val, body))),
|
|
Refl(ty_v, v),
|
|
pf);
|
|
return make_pair(new_v, proof);
|
|
}
|
|
|
|
/**
|
|
\brief For a lambda term v = (let n : ty = val in body) and the rewriting result
|
|
for val, it constructs a new rewriting result for v' = (let n : ty
|
|
= val' in body) with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v (let n : ty = val in body)
|
|
\param result_value rewriting result of val -- pair of val'
|
|
rewritten term of val and \c pf_val the proof of (val = val')
|
|
\return pair of v' = (let n : ty = val' in body), and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_let_value(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_value) {
|
|
lean_assert(is_let(v));
|
|
type_inferer ti(env);
|
|
name const & n = let_name(v);
|
|
expr const & ty = let_type(v);
|
|
expr const & val = let_value(v);
|
|
expr const & body = let_body(v);
|
|
expr const & new_val = result_value.first;
|
|
expr const & pf = result_value.second;
|
|
expr const & new_v = mk_let(n, ty, new_val, body);
|
|
expr const & ty_val = ti(val, ctx);
|
|
expr const & ty_v = ti(v, ctx);
|
|
expr const & proof = Subst(ty_val, val, new_val,
|
|
Fun({Const("x"), ty_val},
|
|
mk_eq(v, mk_let(n, ty, Const("x"), body))),
|
|
Refl(ty_v, v),
|
|
pf);
|
|
return make_pair(new_v, proof);
|
|
}
|
|
|
|
/**
|
|
\brief For a lambda term v = (let n : ty = val in body) and the rewriting result
|
|
for body, it constructs a new rewriting result for v' = (let n : ty
|
|
= val in body') with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v (let n : ty = val in body)
|
|
\param result_body rewriting result of body -- pair of \c body'
|
|
rewritten term of body and \c pf_body the proof of (body =
|
|
body')
|
|
\return pair of v' = (let n : ty = val in body'), and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_let_body(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_body) {
|
|
lean_assert(is_let(v));
|
|
type_inferer ti(env);
|
|
name const & n = let_name(v);
|
|
expr const & ty = let_type(v);
|
|
expr const & val = let_value(v);
|
|
expr const & body = let_body(v);
|
|
expr const & new_body = result_body.first;
|
|
expr const & pf = result_body.second;
|
|
expr const & new_v = mk_let(n, ty, val, new_body);
|
|
expr const & ty_body = ti(body, extend(ctx, n, ty, body));
|
|
expr const & ty_v = ti(v, ctx);
|
|
expr const & proof = Subst(ty_body, body, new_body,
|
|
Fun({Const("e"), ty_body},
|
|
mk_eq(v, mk_let(n, ty, val, Const("e")))),
|
|
Refl(ty_v, v),
|
|
pf);
|
|
return make_pair(new_v, proof);
|
|
}
|
|
|
|
/**
|
|
\brief For a lambda term v = (e_0 e_1 ... e_n) and the rewriting results
|
|
for each e_i, it constructs a new rewriting result for v' = (e'_0
|
|
e'_1 ... e'_n) with the proof of v = v'.
|
|
|
|
\param env environment
|
|
\param ctx context
|
|
\param v (e_0 e_1 ... e_n)
|
|
\param results rewriting result foe each e_i -- pair of e'_i
|
|
rewritten term of e_i and \c pf_e_i the proof of (e_i = e'_i)
|
|
\return pair of v' = (e'_0 e'_1 ... e'_n), and proof of v = v'
|
|
*/
|
|
pair<expr, expr> rewrite_app(environment const & env, context & ctx, expr const & v, buffer<pair<expr, expr>> const & results ) {
|
|
type_inferer ti(env);
|
|
expr f = arg(v, 0);
|
|
expr new_f = results[0].first;
|
|
expr pf = results[0].second;
|
|
for (unsigned i = 1; i < results.size(); i++) {
|
|
expr const & f_ty = ti(f, ctx);
|
|
lean_assert(is_pi(f_ty));
|
|
expr const & f_ty_domain = abst_domain(f_ty); // A
|
|
expr f_ty_body = mk_lambda(abst_name(f_ty), f_ty_domain, abst_body(f_ty)); // B
|
|
expr const & e_i = arg(v, i);
|
|
expr const & new_e_i = results[i].first;
|
|
expr const & pf_e_i = results[i].second;
|
|
bool f_changed = f != new_f;
|
|
if (f_changed) {
|
|
if (arg(v, i) != results[i].first) {
|
|
// Congr : Pi (A : Type u) (B : A -> Type u) (f g : Pi
|
|
// (x : A) B x) (a b : A) (H1 : f = g) (H2 : a = b), f
|
|
// a = g b
|
|
pf = Congr(f_ty_domain, f_ty_body, f, new_f, e_i, new_e_i, pf, pf_e_i);
|
|
} else {
|
|
// Congr1 : Pi (A : Type u) (B : A -> Type u) (f g: Pi
|
|
// (x : A) B x) (a : A) (H : f = g), f a = g a
|
|
pf = Congr1(f_ty_domain, f_ty_body, f, new_f, e_i, pf);
|
|
}
|
|
} else {
|
|
if (arg(v, i) != results[i].first) {
|
|
// Congr2 : Pi (A : Type u) (B : A -> Type u) (a b : A) (f : Pi (x : A) B x) (H : a = b), f a = f b
|
|
pf = Congr2(f_ty_domain, f_ty_body, e_i, new_e_i, f, pf_e_i);
|
|
} else {
|
|
// Refl
|
|
pf = Refl(ti(f(e_i), ctx), f(e_i));
|
|
}
|
|
}
|
|
f = f (e_i);
|
|
new_f = new_f (new_e_i);
|
|
}
|
|
return make_pair(new_f, pf);
|
|
}
|
|
|
|
void rewriter_cell::dealloc() {
|
|
delete this;
|
|
}
|
|
rewriter_cell::rewriter_cell(rewriter_kind k):m_kind(k), m_rc(1) { }
|
|
rewriter_cell::~rewriter_cell() {
|
|
}
|
|
|
|
// Theorem Rewriter
|
|
theorem_rewriter_cell::theorem_rewriter_cell(expr const & type, expr const & body)
|
|
: rewriter_cell(rewriter_kind::Theorem), m_type(type), m_body(body), m_num_args(0) {
|
|
lean_trace("rewriter", tout << "Type = " << m_type << endl;);
|
|
lean_trace("rewriter", tout << "Body = " << m_body << endl;);
|
|
|
|
// We expect the theorem is in the form of
|
|
// Pi (x_1 : t_1 ... x_n : t_n), pattern = rhs
|
|
m_pattern = m_type;
|
|
while (is_pi(m_pattern)) {
|
|
m_pattern = abst_body(m_pattern);
|
|
m_num_args++;
|
|
}
|
|
if (!is_eq(m_pattern)) {
|
|
lean_trace("rewriter", tout << "Theorem " << m_type << " is not in the form of "
|
|
<< "Pi (x_1 : t_1 ... x_n : t_n), pattern = rhs" << endl;);
|
|
}
|
|
m_rhs = eq_rhs(m_pattern);
|
|
m_pattern = eq_lhs(m_pattern);
|
|
|
|
lean_trace("rewriter", tout << "Number of Arg = " << m_num_args << endl;);
|
|
}
|
|
theorem_rewriter_cell::~theorem_rewriter_cell() { }
|
|
pair<expr, expr> theorem_rewriter_cell::operator()(environment const &, context &, expr const & v) const throw(rewriter_exception) {
|
|
// lean_trace("rewriter", tout << "Context = " << ctx << endl;);
|
|
lean_trace("rewriter", tout << "Term = " << v << endl;);
|
|
lean_trace("rewriter", tout << "Pattern = " << m_pattern << endl;);
|
|
lean_trace("rewriter", tout << "Num Args = " << m_num_args << endl;);
|
|
|
|
fo_match fm;
|
|
subst_map s;
|
|
if (!fm.match(m_pattern, v, 0, s)) {
|
|
throw rewriter_exception();
|
|
}
|
|
lean_trace("rewriter", tout << "Subst = " << s << endl;);
|
|
|
|
// apply s to rhs
|
|
auto f = [&s](expr const & e, unsigned offset) -> expr {
|
|
if (!is_var(e)) {
|
|
return e;
|
|
}
|
|
unsigned idx = var_idx(e);
|
|
if (idx < offset) {
|
|
return e;
|
|
}
|
|
|
|
lean_trace("rewriter", tout << "Inside of apply : offset = " << offset
|
|
<< ", e = " << e
|
|
<< ", idx = " << var_idx(e) << endl;);
|
|
auto it = s.find(idx);
|
|
if (it != s.end()) {
|
|
lean_trace("rewriter", tout << "Inside of apply : s[" << idx << "] = " << it->second << endl;);
|
|
return it->second;
|
|
}
|
|
return e;
|
|
};
|
|
|
|
expr new_rhs = replace_fn<decltype(f)>(f)(m_rhs);
|
|
lean_trace("rewriter", tout << "New RHS = " << new_rhs << endl;);
|
|
|
|
expr proof = m_body;
|
|
for (int i = m_num_args -1 ; i >= 0; i--) {
|
|
auto it = s.find(i);
|
|
lean_assert(it != s.end());
|
|
proof = proof(it->second);
|
|
lean_trace("rewriter", tout << "proof: " << i << "\t" << it->second << "\t" << proof << endl;);
|
|
}
|
|
lean_trace("rewriter", tout << "Proof = " << proof << endl;);
|
|
return make_pair(new_rhs, proof);
|
|
}
|
|
ostream & theorem_rewriter_cell::display(ostream & out) const {
|
|
out << "Thm_RW(" << m_type << ", " << m_body << ")";
|
|
return out;
|
|
}
|
|
|
|
// OrElse Rewriter
|
|
orelse_rewriter_cell::orelse_rewriter_cell(rewriter const & rw1, rewriter const & rw2)
|
|
:rewriter_cell(rewriter_kind::OrElse), m_rwlist({rw1, rw2}) { }
|
|
orelse_rewriter_cell::orelse_rewriter_cell(initializer_list<rewriter> const & l)
|
|
:rewriter_cell(rewriter_kind::OrElse), m_rwlist(l) {
|
|
lean_assert(l.size() >= 2);
|
|
}
|
|
orelse_rewriter_cell::~orelse_rewriter_cell() { }
|
|
pair<expr, expr> orelse_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
for (rewriter const & rw : m_rwlist) {
|
|
try {
|
|
return rw(env, ctx, v);
|
|
} catch (rewriter_exception & ) {
|
|
// Do nothing
|
|
}
|
|
}
|
|
// If the execution reaches here, it means every rewriter failed.
|
|
throw rewriter_exception();
|
|
}
|
|
ostream & orelse_rewriter_cell::display(ostream & out) const {
|
|
out << "Or_RW({";
|
|
for (rewriter const & rw : m_rwlist) { out << rw << "; "; }
|
|
out << "})";
|
|
return out;
|
|
}
|
|
|
|
// Then Rewriter
|
|
then_rewriter_cell::then_rewriter_cell(rewriter const & rw1, rewriter const & rw2)
|
|
:rewriter_cell(rewriter_kind::Then), m_rwlist({rw1, rw2}) { }
|
|
then_rewriter_cell::then_rewriter_cell(initializer_list<rewriter> const & l)
|
|
:rewriter_cell(rewriter_kind::Then), m_rwlist(l) {
|
|
lean_assert(l.size() >= 2);
|
|
}
|
|
then_rewriter_cell::~then_rewriter_cell() { }
|
|
pair<expr, expr> then_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
pair<expr, expr> result = car(m_rwlist)(env, ctx, v);
|
|
pair<expr, expr> new_result = result;
|
|
for (rewriter const & rw : cdr(m_rwlist)) {
|
|
new_result = rw(env, ctx, result.first);
|
|
expr const & ty = type_inferer(env)(v, ctx);
|
|
if (v != new_result.first) {
|
|
result = make_pair(new_result.first,
|
|
Trans(ty, v, result.first, new_result.first, result.second, new_result.second));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
ostream & then_rewriter_cell::display(ostream & out) const {
|
|
out << "Then_RW({";
|
|
for (rewriter const & rw : m_rwlist) { out << rw << "; "; }
|
|
out << "})";
|
|
return out;
|
|
}
|
|
|
|
// Try Rewriter
|
|
try_rewriter_cell::try_rewriter_cell(rewriter const & rw1, rewriter const & rw2)
|
|
:rewriter_cell(rewriter_kind::Try), m_rwlist({rw1, rw2}) { }
|
|
try_rewriter_cell::try_rewriter_cell(initializer_list<rewriter> const & l)
|
|
:rewriter_cell(rewriter_kind::Try), m_rwlist(l) {
|
|
lean_assert(l.size() >= 1);
|
|
}
|
|
try_rewriter_cell::~try_rewriter_cell() { }
|
|
pair<expr, expr> try_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
for (rewriter const & rw : m_rwlist) {
|
|
try {
|
|
return rw(env, ctx, v);
|
|
} catch (rewriter_exception & ) {
|
|
// Do nothing
|
|
}
|
|
}
|
|
// If the execution reaches here, it means every rewriter failed.
|
|
expr const & t = type_inferer(env)(v, ctx);
|
|
return make_pair(v, Refl(t, v));
|
|
}
|
|
ostream & try_rewriter_cell::display(ostream & out) const {
|
|
out << "Try_RW({";
|
|
for (rewriter const & rw : m_rwlist) { out << rw << "; "; }
|
|
out << "})";
|
|
return out;
|
|
}
|
|
|
|
// App Rewriter
|
|
app_rewriter_cell::app_rewriter_cell(rewriter const & rw)
|
|
:rewriter_cell(rewriter_kind::App), m_rw(rw) { }
|
|
app_rewriter_cell::~app_rewriter_cell() { }
|
|
pair<expr, expr> app_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
if (!is_app(v))
|
|
throw rewriter_exception();
|
|
|
|
buffer<pair<expr, expr>> results;
|
|
for (unsigned i = 0; i < num_args(v); i++) {
|
|
results.push_back(m_rw(env, ctx, arg(v, i)));
|
|
}
|
|
return rewrite_app(env, ctx, v, results);
|
|
}
|
|
|
|
ostream & app_rewriter_cell::display(ostream & out) const {
|
|
out << "App_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
// Lambda Type Rewriter
|
|
lambda_type_rewriter_cell::lambda_type_rewriter_cell(rewriter const & rw)
|
|
:rewriter_cell(rewriter_kind::LambdaType), m_rw(rw) { }
|
|
lambda_type_rewriter_cell::~lambda_type_rewriter_cell() { }
|
|
|
|
pair<expr, expr> lambda_type_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
if (!is_lambda(v))
|
|
throw rewriter_exception();
|
|
expr const & ty = abst_domain(v);
|
|
type_inferer ti(env);
|
|
pair<expr, expr> result_ty = m_rw(env, ctx, ty);
|
|
if (ty != result_ty.first) {
|
|
return rewrite_lambda_type(env, ctx, v, result_ty);
|
|
} else {
|
|
// nothing changed
|
|
return make_pair(v, Refl(ti(v, ctx), v));
|
|
}
|
|
}
|
|
ostream & lambda_type_rewriter_cell::display(ostream & out) const {
|
|
out << "Lambda_Type_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
// Lambda Body Rewriter
|
|
lambda_body_rewriter_cell::lambda_body_rewriter_cell(rewriter const & rw)
|
|
:rewriter_cell(rewriter_kind::LambdaBody), m_rw(rw) { }
|
|
lambda_body_rewriter_cell::~lambda_body_rewriter_cell() { }
|
|
|
|
pair<expr, expr> lambda_body_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
if (!is_lambda(v))
|
|
throw rewriter_exception();
|
|
|
|
name const & n = abst_name(v);
|
|
expr const & ty = abst_domain(v);
|
|
expr const & body = abst_body(v);
|
|
context new_ctx = extend(ctx, n, ty);
|
|
pair<expr, expr> result_body = m_rw(env, new_ctx, body);
|
|
if (body != result_body.first) {
|
|
// body changed
|
|
return rewrite_lambda_body(env, ctx, v, result_body);
|
|
} else {
|
|
// nothing changed
|
|
type_inferer ti(env);
|
|
return make_pair(v, Refl(ti(v, ctx), v));
|
|
}
|
|
}
|
|
ostream & lambda_body_rewriter_cell::display(ostream & out) const {
|
|
out << "Lambda_Body_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
// Lambda Rewriter
|
|
lambda_rewriter_cell::lambda_rewriter_cell(rewriter const & rw)
|
|
:rewriter_cell(rewriter_kind::Lambda), m_rw(rw) { }
|
|
lambda_rewriter_cell::~lambda_rewriter_cell() { }
|
|
|
|
pair<expr, expr> lambda_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
if (!is_lambda(v))
|
|
throw rewriter_exception();
|
|
rewriter rw = mk_then_rewriter(mk_lambda_type_rewriter(m_rw),
|
|
mk_lambda_body_rewriter(m_rw));
|
|
return rw(env, ctx, v);
|
|
}
|
|
ostream & lambda_rewriter_cell::display(ostream & out) const {
|
|
out << "Lambda_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
// Pi Type Rewriter
|
|
pi_type_rewriter_cell::pi_type_rewriter_cell(rewriter const & rw)
|
|
:rewriter_cell(rewriter_kind::PiType), m_rw(rw) { }
|
|
pi_type_rewriter_cell::~pi_type_rewriter_cell() { }
|
|
|
|
pair<expr, expr> pi_type_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
if (!is_pi(v))
|
|
throw rewriter_exception();
|
|
|
|
expr const & ty = abst_domain(v);
|
|
pair<expr, expr> result_ty = m_rw(env, ctx, ty);
|
|
if (ty != result_ty.first) {
|
|
return rewrite_pi_type(env, ctx, v, result_ty);
|
|
} else {
|
|
// nothing changed
|
|
type_inferer ti(env);
|
|
return make_pair(v, Refl(ti(v, ctx), v));
|
|
}
|
|
}
|
|
ostream & pi_type_rewriter_cell::display(ostream & out) const {
|
|
out << "Pi_Type_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
// Pi Body Rewriter
|
|
pi_body_rewriter_cell::pi_body_rewriter_cell(rewriter const & rw)
|
|
:rewriter_cell(rewriter_kind::PiBody), m_rw(rw) { }
|
|
pi_body_rewriter_cell::~pi_body_rewriter_cell() { }
|
|
|
|
pair<expr, expr> pi_body_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
if (!is_pi(v))
|
|
throw rewriter_exception();
|
|
|
|
name const & n = abst_name(v);
|
|
expr const & ty = abst_domain(v);
|
|
expr const & body = abst_body(v);
|
|
context new_ctx = extend(ctx, n, ty);
|
|
pair<expr, expr> result_body = m_rw(env, new_ctx, body);
|
|
if (body != result_body.first) {
|
|
// body changed
|
|
return rewrite_pi_body(env, ctx, v, result_body);
|
|
} else {
|
|
// nothing changed
|
|
type_inferer ti(env);
|
|
return make_pair(v, Refl(ti(v, ctx), v));
|
|
}
|
|
}
|
|
ostream & pi_body_rewriter_cell::display(ostream & out) const {
|
|
out << "Pi_Body_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
// Pi Rewriter
|
|
pi_rewriter_cell::pi_rewriter_cell(rewriter const & rw)
|
|
:rewriter_cell(rewriter_kind::Pi), m_rw(rw) { }
|
|
pi_rewriter_cell::~pi_rewriter_cell() { }
|
|
pair<expr, expr> pi_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
if (!is_pi(v))
|
|
throw rewriter_exception();
|
|
rewriter rw = mk_then_rewriter(mk_pi_type_rewriter(m_rw),
|
|
mk_pi_body_rewriter(m_rw));
|
|
return rw(env, ctx, v);
|
|
}
|
|
ostream & pi_rewriter_cell::display(ostream & out) const {
|
|
out << "Pi_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
// Let Type rewriter
|
|
let_type_rewriter_cell::let_type_rewriter_cell(rewriter const & rw)
|
|
:rewriter_cell(rewriter_kind::LetType), m_rw(rw) { }
|
|
let_type_rewriter_cell::~let_type_rewriter_cell() { }
|
|
pair<expr, expr> let_type_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
if (!is_let(v))
|
|
throw rewriter_exception();
|
|
|
|
expr const & ty = let_type(v);
|
|
pair<expr, expr> result_ty = m_rw(env, ctx, ty);
|
|
if (ty != result_ty.first) {
|
|
// ty changed
|
|
return rewrite_let_type(env, ctx, v, result_ty);
|
|
} else {
|
|
type_inferer ti(env);
|
|
return make_pair(v, Refl(ti(v, ctx), v));
|
|
}
|
|
}
|
|
ostream & let_type_rewriter_cell::display(ostream & out) const {
|
|
out << "Let_Type_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
// Let Value rewriter
|
|
let_value_rewriter_cell::let_value_rewriter_cell(rewriter const & rw)
|
|
:rewriter_cell(rewriter_kind::LetValue), m_rw(rw) { }
|
|
let_value_rewriter_cell::~let_value_rewriter_cell() { }
|
|
pair<expr, expr> let_value_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
if (!is_let(v))
|
|
throw rewriter_exception();
|
|
|
|
expr const & val = let_value(v);
|
|
pair<expr, expr> result_val = m_rw(env, ctx, val);
|
|
if (val != result_val.first) {
|
|
// ty changed
|
|
return rewrite_let_value(env, ctx, v, result_val);
|
|
} else {
|
|
type_inferer ti(env);
|
|
return make_pair(v, Refl(ti(v, ctx), v));
|
|
}
|
|
}
|
|
ostream & let_value_rewriter_cell::display(ostream & out) const {
|
|
out << "Let_Value_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
// Let Body rewriter
|
|
let_body_rewriter_cell::let_body_rewriter_cell(rewriter const & rw)
|
|
:rewriter_cell(rewriter_kind::LetBody), m_rw(rw) { }
|
|
let_body_rewriter_cell::~let_body_rewriter_cell() { }
|
|
pair<expr, expr> let_body_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
if (!is_let(v))
|
|
throw rewriter_exception();
|
|
|
|
name const & n = let_name(v);
|
|
expr const & ty = let_type(v);
|
|
expr const & body = let_body(v);
|
|
context new_ctx = extend(ctx, n, ty);
|
|
pair<expr, expr> result_body = m_rw(env, new_ctx, body);
|
|
if (body != result_body.first) {
|
|
return rewrite_let_body(env, ctx, v, result_body);
|
|
} else {
|
|
type_inferer ti(env);
|
|
return make_pair(v, Refl(ti(v, ctx), v));
|
|
}
|
|
}
|
|
ostream & let_body_rewriter_cell::display(ostream & out) const {
|
|
out << "Let_Body_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
// Let rewriter
|
|
let_rewriter_cell::let_rewriter_cell(rewriter const & rw)
|
|
:rewriter_cell(rewriter_kind::Let), m_rw(rw) { }
|
|
let_rewriter_cell::~let_rewriter_cell() { }
|
|
pair<expr, expr> let_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
if (!is_let(v))
|
|
throw rewriter_exception();
|
|
rewriter rw = mk_then_rewriter({mk_let_type_rewriter(m_rw),
|
|
mk_let_value_rewriter(m_rw),
|
|
mk_let_body_rewriter(m_rw)});
|
|
return rw(env, ctx, v);
|
|
}
|
|
ostream & let_rewriter_cell::display(ostream & out) const {
|
|
out << "Let_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
// Fail rewriter
|
|
fail_rewriter_cell::fail_rewriter_cell():rewriter_cell(rewriter_kind::Fail) { }
|
|
fail_rewriter_cell::~fail_rewriter_cell() { }
|
|
pair<expr, expr> fail_rewriter_cell::operator()(environment const &, context &, expr const &) const throw(rewriter_exception) {
|
|
throw rewriter_exception();
|
|
}
|
|
ostream & fail_rewriter_cell::display(ostream & out) const {
|
|
out << "Fail_RW()";
|
|
return out;
|
|
}
|
|
|
|
// Success rewriter (trivial)
|
|
success_rewriter_cell::success_rewriter_cell():rewriter_cell(rewriter_kind::Success) { }
|
|
success_rewriter_cell::~success_rewriter_cell() { }
|
|
pair<expr, expr> success_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
expr const & t = type_inferer(env)(v, ctx);
|
|
return make_pair(v, Refl(t, v));
|
|
}
|
|
ostream & success_rewriter_cell::display(ostream & out) const {
|
|
out << "Success_RW()";
|
|
return out;
|
|
}
|
|
|
|
// Repeat rewriter
|
|
repeat_rewriter_cell::repeat_rewriter_cell(rewriter const & rw):rewriter_cell(rewriter_kind::Repeat), m_rw(rw) { }
|
|
repeat_rewriter_cell::~repeat_rewriter_cell() { }
|
|
pair<expr, expr> repeat_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
pair<expr, expr> result = mk_success_rewriter()(env, ctx, v);
|
|
type_inferer ti(env);
|
|
try {
|
|
while (true) {
|
|
pair<expr, expr> new_result = m_rw(env, ctx, result.first);
|
|
if (result.first == new_result.first)
|
|
break;
|
|
expr const & ty = ti(v, ctx);
|
|
result = make_pair(new_result.first,
|
|
Trans(ty, v, result.first, new_result.first, result.second, new_result.second));
|
|
}
|
|
} catch (rewriter_exception &) {
|
|
return result;
|
|
}
|
|
return result;
|
|
}
|
|
ostream & repeat_rewriter_cell::display(ostream & out) const {
|
|
out << "Repeat_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
// Depth rewriter
|
|
depth_rewriter_cell::depth_rewriter_cell(rewriter const & rw):rewriter_cell(rewriter_kind::Depth), m_rw(rw) { }
|
|
depth_rewriter_cell::~depth_rewriter_cell() { }
|
|
pair<expr, expr> depth_rewriter_cell::operator()(environment const & env, context & ctx, expr const & v) const throw(rewriter_exception) {
|
|
apply_rewriter_fn f(m_rw);
|
|
return f.apply(env, ctx, v);
|
|
}
|
|
ostream & depth_rewriter_cell::display(ostream & out) const {
|
|
out << "Depth_RW(" << m_rw << ")";
|
|
return out;
|
|
}
|
|
|
|
rewriter mk_theorem_rewriter(expr const & type, expr const & body) {
|
|
return rewriter(new theorem_rewriter_cell(type, body));
|
|
}
|
|
rewriter mk_then_rewriter(rewriter const & rw1, rewriter const & rw2) {
|
|
return rewriter(new then_rewriter_cell(rw1, rw2));
|
|
}
|
|
rewriter mk_then_rewriter(initializer_list<rewriter> const & l) {
|
|
return rewriter(new then_rewriter_cell(l));
|
|
}
|
|
rewriter mk_try_rewriter(rewriter const & rw) {
|
|
return rewriter(new try_rewriter_cell({rw}));
|
|
}
|
|
rewriter mk_try_rewriter(rewriter const & rw1, rewriter const & rw2) {
|
|
return rewriter(new try_rewriter_cell(rw1, rw2));
|
|
}
|
|
rewriter mk_try_rewriter(initializer_list<rewriter> const & l) {
|
|
return rewriter(new try_rewriter_cell(l));
|
|
}
|
|
rewriter mk_orelse_rewriter(rewriter const & rw1, rewriter const & rw2) {
|
|
return rewriter(new orelse_rewriter_cell(rw1, rw2));
|
|
}
|
|
rewriter mk_orelse_rewriter(initializer_list<rewriter> const & l) {
|
|
return rewriter(new orelse_rewriter_cell(l));
|
|
}
|
|
rewriter mk_app_rewriter(rewriter const & rw) {
|
|
return rewriter(new app_rewriter_cell(rw));
|
|
}
|
|
rewriter mk_lambda_type_rewriter(rewriter const & rw) {
|
|
return rewriter(new lambda_type_rewriter_cell(rw));
|
|
}
|
|
rewriter mk_lambda_body_rewriter(rewriter const & rw) {
|
|
return rewriter(new lambda_body_rewriter_cell(rw));
|
|
}
|
|
rewriter mk_lambda_rewriter(rewriter const & rw) {
|
|
return rewriter(new lambda_rewriter_cell(rw));
|
|
}
|
|
rewriter mk_pi_type_rewriter(rewriter const & rw) {
|
|
return rewriter(new pi_type_rewriter_cell(rw));
|
|
}
|
|
rewriter mk_pi_body_rewriter(rewriter const & rw) {
|
|
return rewriter(new pi_body_rewriter_cell(rw));
|
|
}
|
|
rewriter mk_pi_rewriter(rewriter const & rw) {
|
|
return rewriter(new pi_rewriter_cell(rw));
|
|
}
|
|
rewriter mk_let_type_rewriter(rewriter const & rw) {
|
|
return rewriter(new let_type_rewriter_cell(rw));
|
|
}
|
|
rewriter mk_let_value_rewriter(rewriter const & rw) {
|
|
return rewriter(new let_value_rewriter_cell(rw));
|
|
}
|
|
rewriter mk_let_body_rewriter(rewriter const & rw) {
|
|
return rewriter(new let_body_rewriter_cell(rw));
|
|
}
|
|
rewriter mk_let_rewriter(rewriter const & rw) {
|
|
return rewriter(new let_rewriter_cell(rw));
|
|
}
|
|
rewriter mk_fail_rewriter() {
|
|
return rewriter(new fail_rewriter_cell());
|
|
}
|
|
rewriter mk_success_rewriter() {
|
|
return rewriter(new success_rewriter_cell());
|
|
}
|
|
rewriter mk_repeat_rewriter(rewriter const & rw) {
|
|
return rewriter(new repeat_rewriter_cell(rw));
|
|
}
|
|
rewriter mk_depth_rewriter(rewriter const & rw) {
|
|
return rewriter(new depth_rewriter_cell(rw));
|
|
}
|
|
}
|