106 lines
3.1 KiB
Text
106 lines
3.1 KiB
Text
/-
|
|
Copyright (c) 2015 Haitao Zhang. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Haitao Zhang, Leonardo de Moura
|
|
|
|
Finite ordinal types.
|
|
-/
|
|
import data.list.basic data.finset.basic data.fintype.card
|
|
open eq.ops nat function list finset fintype
|
|
|
|
structure fin (n : nat) := (val : nat) (is_lt : val < n)
|
|
attribute fin.val [coercion]
|
|
|
|
definition less_than [reducible] := fin
|
|
|
|
namespace fin
|
|
section
|
|
open decidable
|
|
protected definition has_decidable_eq [instance] (n : nat) : ∀ (i j : fin n), decidable (i = j)
|
|
| (mk ival ilt) (mk jval jlt) :=
|
|
match nat.has_decidable_eq ival jval with
|
|
| inl veq := inl (by substvars)
|
|
| inr vne := inr (by intro h; injection h; contradiction)
|
|
end
|
|
end
|
|
|
|
lemma dinj_lt (n : nat) : dinj (λ i, i < n) fin.mk :=
|
|
take a1 a2 Pa1 Pa2 Pmkeq, fin.no_confusion Pmkeq (λ Pe Pqe, Pe)
|
|
|
|
lemma val_mk (n i : nat) (Plt : i < n) : fin.val (fin.mk i Plt) = i := rfl
|
|
|
|
definition upto [reducible] (n : nat) : list (fin n) :=
|
|
dmap (λ i, i < n) fin.mk (list.upto n)
|
|
|
|
lemma nodup_upto (n : nat) : nodup (upto n) :=
|
|
dmap_nodup_of_dinj (dinj_lt n) (list.nodup_upto n)
|
|
|
|
lemma mem_upto (n : nat) : ∀ (i : fin n), i ∈ upto n :=
|
|
take i, fin.destruct i
|
|
(take ival Piltn,
|
|
assert Pin : ival ∈ list.upto n, from mem_upto_of_lt Piltn,
|
|
mem_dmap Piltn Pin)
|
|
|
|
lemma upto_zero : upto 0 = [] :=
|
|
by rewrite [↑upto, list.upto_nil, dmap_nil]
|
|
|
|
lemma map_val_upto (n : nat) : map fin.val (upto n) = list.upto n :=
|
|
map_dmap_of_inv_of_pos (val_mk n) (@lt_of_mem_upto n)
|
|
|
|
lemma length_upto (n : nat) : length (upto n) = n :=
|
|
calc
|
|
length (upto n) = length (list.upto n) : (map_val_upto n ▸ length_map fin.val (upto n))⁻¹
|
|
... = n : list.length_upto n
|
|
|
|
definition is_fintype [instance] (n : nat) : fintype (fin n) :=
|
|
fintype.mk (upto n) (nodup_upto n) (mem_upto n)
|
|
|
|
section pigeonhole
|
|
open fintype
|
|
|
|
lemma card_fin (n : nat) : card (fin n) = n := length_upto n
|
|
|
|
theorem pigeonhole {n m : nat} (Pmltn : m < n) : ¬∃ f : fin n → fin m, injective f :=
|
|
assume Pex, absurd Pmltn (not_lt_of_ge
|
|
(calc
|
|
n = card (fin n) : card_fin
|
|
... ≤ card (fin m) : card_le_of_inj (fin n) (fin m) Pex
|
|
... = m : card_fin))
|
|
|
|
end pigeonhole
|
|
|
|
definition zero (n : nat) : fin (succ n) :=
|
|
mk 0 !zero_lt_succ
|
|
|
|
variable {n : nat}
|
|
|
|
theorem val_lt : ∀ i : fin n, val i < n
|
|
| (mk v h) := h
|
|
|
|
definition lift : fin n → Π m, fin (n + m)
|
|
| (mk v h) m := mk v (lt_add_of_lt_right h m)
|
|
|
|
theorem val_lift : ∀ (i : fin n) (m : nat), val i = val (lift i m)
|
|
| (mk v h) m := rfl
|
|
|
|
definition pred : fin n → fin n
|
|
| (mk v h) := mk (nat.pred v) (pre_lt_of_lt h)
|
|
|
|
lemma val_pred : ∀ (i : fin n), val (pred i) = nat.pred (val i)
|
|
| (mk v h) := rfl
|
|
|
|
lemma pred_zero : pred (zero n) = zero n :=
|
|
rfl
|
|
|
|
definition mk_pred (i : nat) (h : succ i < succ n) : fin n :=
|
|
mk i (lt_of_succ_lt_succ h)
|
|
|
|
definition succ : fin n → fin (succ n)
|
|
| (mk v h) := mk (nat.succ v) (succ_lt_succ h)
|
|
|
|
lemma val_succ : ∀ (i : fin n), val (succ i) = nat.succ (val i)
|
|
| (mk v h) := rfl
|
|
|
|
definition elim0 {C : Type} : fin 0 → C
|
|
| (mk v h) := absurd h !not_lt_zero
|
|
end fin
|