lean2/hott/homotopy/connectedness.hlean

326 lines
12 KiB
Text

/-
Copyright (c) 2015 Ulrik Buchholtz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz, Floris van Doorn
-/
import types.trunc types.arrow_2 types.lift
open eq is_trunc is_equiv nat equiv trunc function fiber funext pi
namespace is_conn
definition is_conn [reducible] (n : ℕ₋₂) (A : Type) : Type :=
is_contr (trunc n A)
definition is_conn_equiv_closed (n : ℕ₋₂) {A B : Type}
: A ≃ B → is_conn n A → is_conn n B :=
begin
intros H C,
fapply @is_contr_equiv_closed (trunc n A) _,
apply trunc_equiv_trunc,
assumption
end
definition is_conn_fun [reducible] (n : ℕ₋₂) {A B : Type} (f : A → B) : Type :=
Πb : B, is_conn n (fiber f b)
theorem is_conn_of_le (A : Type) {n k : ℕ₋₂} (H : n ≤ k) [is_conn k A] : is_conn n A :=
begin
apply is_contr_equiv_closed,
apply trunc_trunc_equiv_left _ H
end
theorem is_conn_fun_of_le {A B : Type} (f : A → B) {n k : ℕ₋₂} (H : n ≤ k)
[is_conn_fun k f] : is_conn_fun n f :=
λb, is_conn_of_le _ H
namespace is_conn_fun
section
parameters (n : ℕ₋₂) {A B : Type} {h : A → B}
(H : is_conn_fun n h) (P : B → Type) [Πb, is_trunc n (P b)]
private definition rec.helper : (Πa : A, P (h a)) → Πb : B, trunc n (fiber h b) → P b :=
λt b, trunc.rec (λx, point_eq x ▸ t (point x))
private definition rec.g : (Πa : A, P (h a)) → (Πb : B, P b) :=
λt b, rec.helper t b (@center (trunc n (fiber h b)) (H b))
-- induction principle for n-connected maps (Lemma 7.5.7)
protected definition rec : is_equiv (λs : Πb : B, P b, λa : A, s (h a)) :=
adjointify (λs a, s (h a)) rec.g
begin
intro t, apply eq_of_homotopy, intro a, unfold rec.g, unfold rec.helper,
rewrite [@center_eq _ (H (h a)) (tr (fiber.mk a idp))],
end
begin
intro k, apply eq_of_homotopy, intro b, unfold rec.g,
generalize (@center _ (H b)), apply trunc.rec, apply fiber.rec,
intros a p, induction p, reflexivity
end
protected definition elim : (Πa : A, P (h a)) → (Πb : B, P b) :=
@is_equiv.inv _ _ (λs a, s (h a)) rec
protected definition elim_β : Πf : (Πa : A, P (h a)), Πa : A, elim f (h a) = f a :=
λf, apd10 (@is_equiv.right_inv _ _ (λs a, s (h a)) rec f)
end
section
parameters (n k : ℕ₋₂) {A B : Type} {f : A → B}
(H : is_conn_fun n f) (P : B → Type) [HP : Πb, is_trunc (n +2+ k) (P b)]
include H HP
-- Lemma 8.6.1
proposition elim_general : is_trunc_fun k (pi_functor_left f P) :=
begin
revert P HP,
induction k with k IH: intro P HP t,
{ apply is_contr_fiber_of_is_equiv, apply is_conn_fun.rec, exact H, exact HP},
{ apply is_trunc_succ_intro,
intros x y, cases x with g p, cases y with h q,
have e : fiber (λr : g ~ h, (λa, r (f a))) (apd10 (p ⬝ q⁻¹))
≃ (fiber.mk g p = fiber.mk h q
:> fiber (λs : (Πb, P b), (λa, s (f a))) t),
begin
apply equiv.trans !fiber.sigma_char,
have e' : Πr : g ~ h,
((λa, r (f a)) = apd10 (p ⬝ q⁻¹))
≃ (ap (λv, (λa, v (f a))) (eq_of_homotopy r) ⬝ q = p),
begin
intro r,
refine equiv.trans _ (eq_con_inv_equiv_con_eq q p
(ap (λv a, v (f a)) (eq_of_homotopy r))),
rewrite [-(ap (λv a, v (f a)) (apd10_eq_of_homotopy r))],
rewrite [-(apd10_ap_precompose_dependent f (eq_of_homotopy r))],
apply equiv.symm,
apply eq_equiv_fn_eq (@apd10 A (λa, P (f a)) (λa, g (f a)) (λa, h (f a)))
end,
apply equiv.trans (sigma.sigma_equiv_sigma_right e'), clear e',
apply equiv.trans (equiv.symm (sigma.sigma_equiv_sigma_left
eq_equiv_homotopy)),
apply equiv.symm, apply equiv.trans !fiber_eq_equiv,
apply sigma.sigma_equiv_sigma_right, intro r,
apply eq_equiv_eq_symm
end,
apply @is_trunc_equiv_closed _ _ k e, clear e,
apply IH (λb : B, (g b = h b)) (λb, @is_trunc_eq (P b) (n +2+ k) (HP b) (g b) (h b))}
end
end
section
universe variables u v
parameters (n : ℕ₋₂) {A : Type.{u}} {B : Type.{v}} {h : A → B}
parameter sec : ΠP : B → trunctype.{max u v} n,
is_retraction (λs : (Πb : B, P b), λ a, s (h a))
private definition s := sec (λb, trunctype.mk' n (trunc n (fiber h b)))
include sec
-- the other half of Lemma 7.5.7
definition intro : is_conn_fun n h :=
begin
intro b,
apply is_contr.mk (@is_retraction.sect _ _ _ s (λa, tr (fiber.mk a idp)) b),
esimp, apply trunc.rec, apply fiber.rec, intros a p,
apply transport
(λz : (Σy, h a = y), @sect _ _ _ s (λa, tr (mk a idp)) (sigma.pr1 z) =
tr (fiber.mk a (sigma.pr2 z)))
(@center_eq _ (is_contr_sigma_eq (h a)) (sigma.mk b p)),
exact apd10 (@right_inverse _ _ _ s (λa, tr (fiber.mk a idp))) a
end
end
end is_conn_fun
-- Connectedness is related to maps to and from the unit type, first to
section
parameters (n : ℕ₋₂) (A : Type)
definition is_conn_of_map_to_unit
: is_conn_fun n (const A unit.star) → is_conn n A :=
begin
intro H, unfold is_conn_fun at H,
exact is_conn_equiv_closed n (fiber.fiber_star_equiv A) _,
end
-- now maps from unit
definition is_conn_of_map_from_unit (a₀ : A) (H : is_conn_fun n (const unit a₀))
: is_conn n .+1 A :=
is_contr.mk (tr a₀)
begin
apply trunc.rec, intro a,
exact trunc.elim (λz : fiber (const unit a₀) a, ap tr (point_eq z))
(@center _ (H a))
end
definition is_conn_fun_from_unit (a₀ : A) [H : is_conn n .+1 A]
: is_conn_fun n (const unit a₀) :=
begin
intro a,
apply is_conn_equiv_closed n (equiv.symm (fiber_const_equiv A a₀ a)),
apply @is_contr_equiv_closed _ _ (tr_eq_tr_equiv n a₀ a),
end
end
-- as special case we get elimination principles for pointed connected types
namespace is_conn
open pointed unit
section
parameters (n : ℕ₋₂) {A : Type*}
[H : is_conn n .+1 A] (P : A → Type) [Πa, is_trunc n (P a)]
include H
protected definition rec : is_equiv (λs : Πa : A, P a, s (Point A)) :=
@is_equiv_compose
(Πa : A, P a) (unit → P (Point A)) (P (Point A))
(λs x, s (Point A)) (λf, f unit.star)
(is_conn_fun.rec n (is_conn_fun_from_unit n A (Point A)) P)
(to_is_equiv (arrow_unit_left (P (Point A))))
protected definition elim : P (Point A) → (Πa : A, P a) :=
@is_equiv.inv _ _ (λs, s (Point A)) rec
protected definition elim_β (p : P (Point A)) : elim p (Point A) = p :=
@is_equiv.right_inv _ _ (λs, s (Point A)) rec p
end
section
parameters (n k : ℕ₋₂) {A : Type*}
[H : is_conn n .+1 A] (P : A → Type) [Πa, is_trunc (n +2+ k) (P a)]
include H
proposition elim_general (p : P (Point A))
: is_trunc k (fiber (λs : (Πa : A, P a), s (Point A)) p) :=
@is_trunc_equiv_closed
(fiber (λs x, s (Point A)) (λx, p))
(fiber (λs, s (Point A)) p)
k
(equiv.symm (fiber.equiv_postcompose _ (arrow_unit_left (P (Point A))) _))
(is_conn_fun.elim_general n k (is_conn_fun_from_unit n A (Point A)) P (λx, p))
end
end is_conn
-- Lemma 7.5.2
definition minus_one_conn_of_surjective {A B : Type} (f : A → B)
: is_surjective f → is_conn_fun -1 f :=
begin
intro H, intro b,
exact @is_contr_of_inhabited_prop (∥fiber f b∥) (is_trunc_trunc -1 (fiber f b)) (H b),
end
definition is_surjection_of_minus_one_conn {A B : Type} (f : A → B)
: is_conn_fun -1 f → is_surjective f :=
begin
intro H, intro b,
exact @center (∥fiber f b∥) (H b),
end
definition merely_of_minus_one_conn {A : Type} : is_conn -1 A → ∥A∥ :=
λH, @center (∥A∥) H
definition minus_one_conn_of_merely {A : Type} : ∥A∥ → is_conn -1 A :=
@is_contr_of_inhabited_prop (∥A∥) (is_trunc_trunc -1 A)
section
open arrow
variables {f g : arrow}
-- Lemma 7.5.4
definition retract_of_conn_is_conn [instance] (r : arrow_hom f g) [H : is_retraction r]
(n : ℕ₋₂) [K : is_conn_fun n f] : is_conn_fun n g :=
begin
intro b, unfold is_conn,
apply is_contr_retract (trunc_functor n (retraction_on_fiber r b)),
exact K (on_cod (arrow.is_retraction.sect r) b)
end
end
-- Corollary 7.5.5
definition is_conn_homotopy (n : ℕ₋₂) {A B : Type} {f g : A → B}
(p : f ~ g) (H : is_conn_fun n f) : is_conn_fun n g :=
@retract_of_conn_is_conn _ _
(arrow.arrow_hom_of_homotopy p) (arrow.is_retraction_arrow_hom_of_homotopy p) n H
-- all types are -2-connected
definition is_conn_minus_two (A : Type) : is_conn -2 A :=
_
-- merely inhabited types are -1-connected
definition is_conn_minus_one (A : Type) (a : ∥ A ∥) : is_conn -1 A :=
is_contr.mk a (is_prop.elim _)
definition is_conn_trunc [instance] (A : Type) (n k : ℕ₋₂) [H : is_conn n A]
: is_conn n (trunc k A) :=
begin
apply is_trunc_equiv_closed, apply trunc_trunc_equiv_trunc_trunc
end
open pointed
definition is_conn_ptrunc [instance] (A : Type*) (n k : ℕ₋₂) [H : is_conn n A]
: is_conn n (ptrunc k A) :=
is_conn_trunc A n k
-- the following trivial cases are solved by type class inference
definition is_conn_of_is_contr (k : ℕ₋₂) (A : Type) [is_contr A] : is_conn k A := _
definition is_conn_fun_of_is_equiv (k : ℕ₋₂) {A B : Type} (f : A → B) [is_equiv f] :
is_conn_fun k f :=
_
-- Lemma 7.5.14
theorem is_equiv_trunc_functor_of_is_conn_fun [instance] {A B : Type} (n : ℕ₋₂) (f : A → B)
[H : is_conn_fun n f] : is_equiv (trunc_functor n f) :=
begin
fapply adjointify,
{ intro b, induction b with b, exact trunc_functor n point (center (trunc n (fiber f b)))},
{ intro b, induction b with b, esimp, generalize center (trunc n (fiber f b)), intro v,
induction v with v, induction v with a p, esimp, exact ap tr p},
{ intro a, induction a with a, esimp, rewrite [center_eq (tr (fiber.mk a idp))]}
end
theorem trunc_equiv_trunc_of_is_conn_fun {A B : Type} (n : ℕ₋₂) (f : A → B)
[H : is_conn_fun n f] : trunc n A ≃ trunc n B :=
equiv.mk (trunc_functor n f) (is_equiv_trunc_functor_of_is_conn_fun n f)
definition is_conn_fun_trunc_functor_of_le {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : k ≤ n)
[H2 : is_conn_fun k f] : is_conn_fun k (trunc_functor n f) :=
begin
apply is_conn_fun.intro,
intro P, have Πb, is_trunc n (P b), from (λb, is_trunc_of_le _ H),
fconstructor,
{ intro f' b,
induction b with b,
refine is_conn_fun.elim k H2 _ _ b, intro a, exact f' (tr a)},
{ intro f', apply eq_of_homotopy, intro a,
induction a with a, esimp, rewrite [is_conn_fun.elim_β]}
end
definition is_conn_fun_trunc_functor_of_ge {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : n ≤ k)
[H2 : is_conn_fun k f] : is_conn_fun k (trunc_functor n f) :=
begin
apply is_conn_fun_of_is_equiv,
apply is_equiv_trunc_functor_of_le f H
end
-- Exercise 7.18
definition is_conn_fun_trunc_functor {n k : ℕ₋₂} {A B : Type} (f : A → B)
[H2 : is_conn_fun k f] : is_conn_fun k (trunc_functor n f) :=
begin
eapply algebra.le_by_cases k n: intro H,
{ exact is_conn_fun_trunc_functor_of_le f H},
{ exact is_conn_fun_trunc_functor_of_ge f H}
end
open lift
definition is_conn_fun_lift_functor (n : ℕ₋₂) {A B : Type} (f : A → B) [is_conn_fun n f] :
is_conn_fun n (lift_functor f) :=
begin
intro b, cases b with b, apply is_trunc_equiv_closed_rev,
{ apply trunc_equiv_trunc, apply fiber_lift_functor}
end
end is_conn