ddef24223b
All HITs which automatically have a point are pointed without a 'p' in front. HITs which do not automatically have a point do still have a p (e.g. pushout/ppushout). There were a lot of annoyances with spheres being indexed by N_{-1} with almost no extra generality. We now index the spheres by nat, making sphere 0 = pbool.
89 lines
3.4 KiB
Text
89 lines
3.4 KiB
Text
/-
|
||
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
Calculating homotopy groups of spheres.
|
||
|
||
In this file we calculate
|
||
π₂(S²) = Z
|
||
πₙ(S²) = πₙ(S³) for n > 2
|
||
πₙ(Sⁿ) = Z for n > 0
|
||
π₂(S³) = Z
|
||
-/
|
||
|
||
import .homotopy_group .freudenthal
|
||
open eq group algebra is_equiv equiv fin prod chain_complex pointed fiber nat is_trunc trunc_index
|
||
sphere.ops trunc is_conn susp bool
|
||
|
||
namespace sphere
|
||
/- Corollaries of the complex hopf fibration combined with the LES of homotopy groups -/
|
||
open sphere sphere.ops int circle hopf
|
||
|
||
definition π2S2 : πg[1+1] (S 2) ≃g gℤ :=
|
||
begin
|
||
refine _ ⬝g fundamental_group_of_circle,
|
||
refine _ ⬝g homotopy_group_isomorphism_of_pequiv _ pfiber_complex_hopf,
|
||
fapply isomorphism_of_equiv,
|
||
{ fapply equiv.mk,
|
||
{ exact cc_to_fn (LES_of_homotopy_groups complex_hopf) (1, 2)},
|
||
{ refine LES_is_equiv_of_trivial complex_hopf 1 2 _ _,
|
||
{ have H : 1 ≤[ℕ] 2, from !one_le_succ,
|
||
apply trivial_homotopy_group_of_is_conn, exact H, rexact is_conn_sphere 3 },
|
||
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
|
||
(LES_of_homotopy_groups_1 complex_hopf 2) _,
|
||
apply trivial_homotopy_group_of_is_conn, apply le.refl, rexact is_conn_sphere 3 }}},
|
||
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))}
|
||
end
|
||
|
||
open circle
|
||
definition πnS3_eq_πnS2 (n : ℕ) : πg[n+2 +1] (S 3) ≃g πg[n+2 +1] (S 2) :=
|
||
begin
|
||
fapply isomorphism_of_equiv,
|
||
{ fapply equiv.mk,
|
||
{ exact cc_to_fn (LES_of_homotopy_groups complex_hopf) (n+3, 0)},
|
||
{ have H : is_trunc 1 (pfiber complex_hopf),
|
||
from @(is_trunc_equiv_closed_rev _ pfiber_complex_hopf) is_trunc_circle,
|
||
refine LES_is_equiv_of_trivial complex_hopf (n+3) 0 _ _,
|
||
{ have H2 : 1 ≤[ℕ] n + 1, from !one_le_succ,
|
||
exact @trivial_ghomotopy_group_of_is_trunc _ _ _ H H2 },
|
||
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
|
||
(LES_of_homotopy_groups_2 complex_hopf _) _,
|
||
have H2 : 1 ≤[ℕ] n + 2, from !one_le_succ,
|
||
apply trivial_ghomotopy_group_of_is_trunc _ _ _ H2 }}},
|
||
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}
|
||
end
|
||
|
||
definition sphere_stability_pequiv (k n : ℕ) (H : k + 2 ≤ 2 * n) :
|
||
π[k + 1] (S (n+1)) ≃* π[k] (S n) :=
|
||
iterate_susp_stability_pequiv pbool H
|
||
|
||
definition stability_isomorphism (k n : ℕ) (H : k + 3 ≤ 2 * n)
|
||
: πg[k+1 +1] (S (n+1)) ≃g πg[k+1] (S n) :=
|
||
iterate_susp_stability_isomorphism pbool H
|
||
|
||
open int circle hopf
|
||
definition πnSn (n : ℕ) : πg[n+1] (S (n+1)) ≃g gℤ :=
|
||
begin
|
||
cases n with n IH,
|
||
{ exact fundamental_group_of_circle },
|
||
{ induction n with n IH,
|
||
{ exact π2S2 },
|
||
{ refine _ ⬝g IH, apply stability_isomorphism,
|
||
rexact add_mul_le_mul_add n 1 2 }}
|
||
end
|
||
|
||
theorem not_is_trunc_sphere (n : ℕ) : ¬is_trunc n (S (n+1)) :=
|
||
begin
|
||
intro H,
|
||
note H2 := trivial_ghomotopy_group_of_is_trunc (S (n+1)) n n !le.refl,
|
||
have H3 : is_contr ℤ, from is_trunc_equiv_closed _ (equiv_of_isomorphism (πnSn n)),
|
||
have H4 : (0 : ℤ) ≠ (1 : ℤ), from dec_star,
|
||
apply H4,
|
||
apply is_prop.elim,
|
||
end
|
||
|
||
definition π3S2 : πg[2+1] (S 2) ≃g gℤ :=
|
||
(πnS3_eq_πnS2 0)⁻¹ᵍ ⬝g πnSn 2
|
||
|
||
end sphere
|