lean2/hott/hit/circle.hlean
2015-05-18 15:59:55 -07:00

265 lines
9.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: hit.circle
Authors: Floris van Doorn
Declaration of the circle
-/
import .sphere types.bool types.eq types.int.hott types.arrow types.equiv algebra.fundamental_group algebra.hott
open eq suspension bool sphere_index is_equiv equiv equiv.ops is_trunc
definition circle : Type₀ := sphere 1
namespace circle
notation `S¹` := circle
definition base1 : circle := !north
definition base2 : circle := !south
definition seg1 : base1 = base2 := merid !north
definition seg2 : base1 = base2 := merid !south
definition base : circle := base1
definition loop : base = base := seg1 ⬝ seg2⁻¹
definition rec2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) (x : circle) : P x :=
begin
fapply (suspension.rec_on x),
{ exact Pb1},
{ exact Pb2},
{ esimp, intro b, fapply (suspension.rec_on b),
{ exact Ps1},
{ exact Ps2},
{ intro x, cases x}},
end
definition rec2_on [reducible] {P : circle → Type} (x : circle) (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) : P x :=
circle.rec2 Pb1 Pb2 Ps1 Ps2 x
theorem rec2_seg1 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2)
: apd (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
!rec_merid
theorem rec2_seg2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2)
: apd (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
!rec_merid
definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 Ps2 : Pb1 = Pb2) (x : circle) : P :=
rec2 Pb1 Pb2 (!tr_constant ⬝ Ps1) (!tr_constant ⬝ Ps2) x
definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P)
(Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : P :=
elim2 Pb1 Pb2 Ps1 Ps2 x
theorem elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2)
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
begin
apply (@cancel_left _ _ _ _ (tr_constant seg1 (elim2 Pb1 Pb2 Ps1 Ps2 base1))),
rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg1],
end
theorem elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2)
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
begin
apply (@cancel_left _ _ _ _ (tr_constant seg2 (elim2 Pb1 Pb2 Ps1 Ps2 base1))),
rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg2],
end
definition elim2_type (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) (x : circle) : Type :=
elim2 Pb1 Pb2 (ua Ps1) (ua Ps2) x
definition elim2_type_on [reducible] (x : circle) (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
: Type :=
elim2_type Pb1 Pb2 Ps1 Ps2 x
theorem elim2_type_seg1 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
: transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg1];apply cast_ua_fn
theorem elim2_type_seg2 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
: transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg2];apply cast_ua_fn
protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase)
(x : circle) : P x :=
begin
fapply (rec2_on x),
{ exact Pbase},
{ exact (transport P seg1 Pbase)},
{ apply idp},
{ apply tr_eq_of_eq_inv_tr, exact (Ploop⁻¹ ⬝ !con_tr)},
end
--rewrite -tr_con, exact Ploop⁻¹
protected definition rec_on [reducible] {P : circle → Type} (x : circle) (Pbase : P base)
(Ploop : loop ▸ Pbase = Pbase) : P x :=
rec Pbase Ploop x
theorem rec_loop_helper {A : Type} (P : A → Type)
{x y : A} {p : x = y} {u : P x} {v : P y} (q : u = p⁻¹ ▸ v) :
eq_inv_tr_of_tr_eq (tr_eq_of_eq_inv_tr q) = q :=
by cases p; exact idp
definition con_refl {A : Type} {x y : A} (p : x = y) : p ⬝ refl _ = p :=
eq.rec_on p idp
theorem rec_loop {P : circle → Type} (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase) :
apd (rec Pbase Ploop) loop = Ploop :=
begin
rewrite [↑loop,apd_con,↑rec,↑rec2_on,↑base,rec2_seg1,apd_inv,rec2_seg2,↑ap], --con_idp should work here
apply concat, apply (ap (λx, x ⬝ _)), apply con_idp, esimp,
rewrite [rec_loop_helper,inv_con_inv_left],
apply con_inv_cancel_left
end
protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase)
(x : circle) : P :=
rec Pbase (tr_constant loop Pbase ⬝ Ploop) x
protected definition elim_on [reducible] {P : Type} (x : circle) (Pbase : P)
(Ploop : Pbase = Pbase) : P :=
elim Pbase Ploop x
theorem elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) :
ap (elim Pbase Ploop) loop = Ploop :=
begin
apply (@cancel_left _ _ _ _ (tr_constant loop (elim Pbase Ploop base))),
rewrite [-apd_eq_tr_constant_con_ap,↑elim,rec_loop],
end
protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase)
(x : circle) : Type :=
elim Pbase (ua Ploop) x
protected definition elim_type_on [reducible] (x : circle) (Pbase : Type)
(Ploop : Pbase ≃ Pbase) : Type :=
elim_type Pbase Ploop x
theorem elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
transport (elim_type Pbase Ploop) loop = Ploop :=
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_loop];apply cast_ua_fn
theorem elim_type_loop_inv (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
transport (elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop :=
by rewrite [tr_inv_fn,↑to_inv]; apply inv_eq_inv; apply elim_type_loop
end circle
attribute circle.base circle.base1 circle.base2 [constructor]
attribute circle.rec circle.elim [unfold-c 4]
attribute circle.elim_type [unfold-c 3]
attribute circle.rec_on circle.elim_on [unfold-c 2]
attribute circle.elim_type_on [unfold-c 1]
attribute circle.rec2 circle.elim2 [unfold-c 6]
attribute circle.elim2_type [unfold-c 5]
attribute circle.rec2_on circle.elim2_on [unfold-c 2]
attribute circle.elim2_type [unfold-c 1]
namespace circle
definition pointed_circle [instance] [constructor] : pointed circle :=
pointed.mk base
definition loop_neq_idp : loop ≠ idp :=
assume H : loop = idp,
have H2 : Π{A : Type₁} {a : A} (p : a = a), p = idp,
from λA a p, calc
p = ap (circle.elim a p) loop : elim_loop
... = ap (circle.elim a p) (refl base) : by rewrite H,
absurd !H2 eq_bnot_ne_idp
definition nonidp (x : circle) : x = x :=
circle.rec_on x loop
(calc
loop ▸ loop = loop⁻¹ ⬝ loop ⬝ loop : transport_eq_lr
... = loop : by rewrite [con.left_inv, idp_con])
definition nonidp_neq_idp : nonidp ≠ (λx, idp) :=
assume H : nonidp = λx, idp,
have H2 : loop = idp, from apd10 H base,
absurd H2 loop_neq_idp
open int
protected definition code (x : circle) : Type₀ :=
circle.elim_type_on x equiv_succ
definition transport_code_loop (a : ) : transport code loop a = succ a :=
ap10 !elim_type_loop a
definition transport_code_loop_inv (a : )
: transport code loop⁻¹ a = pred a :=
ap10 !elim_type_loop_inv a
protected definition encode {x : circle} (p : base = x) : code x :=
transport code p (of_num 0) -- why is the explicit coercion needed here?
protected definition decode {x : circle} : code x → base = x :=
begin
refine circle.rec_on x _ _,
{ exact power loop},
{ apply eq_of_homotopy, intro a,
refine !arrow.arrow_transport ⬝ !transport_eq_r ⬝ _,
rewrite [transport_code_loop_inv,power_con,succ_pred]}
end
--remove this theorem after #484
theorem encode_decode {x : circle} : Π(a : code x), encode (decode a) = a :=
begin
unfold decode, refine circle.rec_on x _ _,
{ intro a, esimp [base,base1], --simplify after #587
apply rec_nat_on a,
{ exact idp},
{ intros n p,
apply transport (λ(y : base = base), transport code y _ = _), apply power_con,
rewrite [▸*,con_tr, transport_code_loop, ↑[encode,code] at p, p]},
{ intros n p,
apply transport (λ(y : base = base), transport code y _ = _),
{ exact !power_con_inv ⬝ ap (power loop) !neg_succ⁻¹},
rewrite [▸*,@con_tr _ code,transport_code_loop_inv, ↑[encode] at p, p, -neg_succ]}},
{ apply eq_of_homotopy, intro a, apply @is_hset.elim, esimp [code,base,base1], exact _}
--simplify after #587
end
definition circle_eq_equiv (x : circle) : (base = x) ≃ code x :=
begin
fapply equiv.MK,
{ exact encode},
{ exact decode},
{ exact encode_decode},
{ intro p, cases p, exact idp},
end
definition base_eq_base_equiv : base = base ≃ :=
circle_eq_equiv base
definition decode_add (a b : ) :
base_eq_base_equiv⁻¹ a ⬝ base_eq_base_equiv⁻¹ b = base_eq_base_equiv⁻¹ (a + b) :=
!power_con_power
definition encode_con (p q : base = base) : encode (p ⬝ q) = encode p + encode q :=
preserve_binary_of_inv_preserve base_eq_base_equiv concat add decode_add p q
--the carrier of π₁(S¹) is the set-truncation of base = base.
open core algebra trunc equiv.ops
definition fg_carrier_equiv_int : π₁(S¹) ≃ :=
trunc_equiv_trunc 0 base_eq_base_equiv ⬝e !equiv_trunc⁻¹ᵉ
definition fundamental_group_of_circle : π₁(S¹) = group_integers :=
begin
apply (Group_eq fg_carrier_equiv_int),
intros g h,
apply trunc.rec_on g, intro g', apply trunc.rec_on h, intro h',
-- esimp at *,
-- esimp [fg_carrier_equiv_int,equiv.trans,equiv.symm,equiv_trunc,trunc_equiv_trunc,
-- base_eq_base_equiv,circle_eq_equiv,is_equiv_tr,semigroup.to_has_mul,monoid.to_semigroup,
-- group.to_monoid,fundamental_group.mul],
apply encode_con,
end
end circle