lean2/hott/algebra/trunc_group.hlean
2016-02-22 11:15:38 -08:00

96 lines
2.4 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
truncating an ∞-group to a group
-/
import hit.trunc algebra.group
open eq is_trunc trunc
namespace algebra
section
parameters (A : Type) (mul : A → A → A) (inv : A → A) (one : A)
{mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c)}
{one_mul : ∀a, mul one a = a} {mul_one : ∀a, mul a one = a}
{mul_left_inv : ∀a, mul (inv a) a = one}
local abbreviation G := trunc 0 A
include mul_assoc one_mul mul_one mul_left_inv
definition trunc_mul [unfold 9 10] (g h : G) : G :=
begin
apply trunc.rec_on g, intro p,
apply trunc.rec_on h, intro q,
exact tr (mul p q)
end
definition trunc_inv [unfold 9] (g : G) : G :=
begin
apply trunc.rec_on g, intro p,
exact tr (inv p)
end
definition trunc_one [constructor] : G :=
tr one
local notation 1 := trunc_one
local postfix ⁻¹ := trunc_inv
local infix * := trunc_mul
theorem trunc_mul_assoc (g₁ g₂ g₃ : G) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
begin
apply trunc.rec_on g₁, intro p₁,
apply trunc.rec_on g₂, intro p₂,
apply trunc.rec_on g₃, intro p₃,
exact ap tr !mul_assoc,
end
theorem trunc_one_mul (g : G) : 1 * g = g :=
begin
apply trunc.rec_on g, intro p,
exact ap tr !one_mul
end
theorem trunc_mul_one (g : G) : g * 1 = g :=
begin
apply trunc.rec_on g, intro p,
exact ap tr !mul_one
end
theorem trunc_mul_left_inv (g : G) : g⁻¹ * g = 1 :=
begin
apply trunc.rec_on g, intro p,
exact ap tr !mul_left_inv
end
theorem trunc_mul_comm (mul_comm : ∀a b, mul a b = mul b a) (g h : G)
: g * h = h * g :=
begin
apply trunc.rec_on g, intro p,
apply trunc.rec_on h, intro q,
exact ap tr !mul_comm
end
parameters (mul_assoc) (one_mul) (mul_one) (mul_left_inv) {A}
definition trunc_group [constructor] : group G :=
⦃group,
mul := trunc_mul,
mul_assoc := trunc_mul_assoc,
one := trunc_one,
one_mul := trunc_one_mul,
mul_one := trunc_mul_one,
inv := trunc_inv,
mul_left_inv := trunc_mul_left_inv,
is_set_carrier := _⦄
definition trunc_comm_group [constructor] (mul_comm : ∀a b, mul a b = mul b a) : comm_group G :=
⦃comm_group, trunc_group, mul_comm := trunc_mul_comm mul_comm⦄
end
end algebra