243 lines
8.1 KiB
Text
243 lines
8.1 KiB
Text
/-
|
||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Leonardo de Moura
|
||
-/
|
||
prelude
|
||
import init.relation init.tactic init.funext
|
||
|
||
open eq
|
||
|
||
inductive acc.{l₁ l₂} {A : Type.{l₁}} (R : A → A → Type.{l₂}) : A → Type.{max l₁ l₂} :=
|
||
intro : ∀x, (∀ y, R y x → acc R y) → acc R x
|
||
|
||
namespace acc
|
||
variables {A : Type} {R : A → A → Type}
|
||
|
||
definition acc_eq {a : A} (H₁ H₂ : acc R a) : H₁ = H₂ :=
|
||
begin
|
||
induction H₁ with a K₁ IH₁,
|
||
induction H₂ with a K₂ IH₂,
|
||
apply eq.ap (intro a),
|
||
apply eq_of_homotopy, intro a,
|
||
apply eq_of_homotopy, intro r,
|
||
apply IH₁
|
||
end
|
||
|
||
definition inv {x y : A} (H₁ : acc R x) (H₂ : R y x) : acc R y :=
|
||
acc.rec_on H₁ (λ x₁ ac₁ iH H₂, ac₁ y H₂) H₂
|
||
|
||
-- dependent elimination for acc
|
||
protected definition drec [recursor]
|
||
{C : Π (a : A), acc R a → Type}
|
||
(h₁ : Π (x : A) (acx : Π (y : A), R y x → acc R y),
|
||
(Π (y : A) (ryx : R y x), C y (acx y ryx)) → C x (acc.intro x acx))
|
||
{a : A} (h₂ : acc R a) : C a h₂ :=
|
||
acc.rec h₁ h₂
|
||
end acc
|
||
|
||
inductive well_founded [class] {A : Type} (R : A → A → Type) : Type :=
|
||
intro : (Π a, acc R a) → well_founded R
|
||
|
||
namespace well_founded
|
||
definition apply [coercion] {A : Type} {R : A → A → Type} (wf : well_founded R) : Πa, acc R a :=
|
||
take a, well_founded.rec_on wf (λp, p) a
|
||
|
||
section
|
||
parameters {A : Type} {R : A → A → Type}
|
||
local infix `≺`:50 := R
|
||
|
||
hypothesis [Hwf : well_founded R]
|
||
|
||
theorem recursion {C : A → Type} (a : A) (H : Πx, (Πy, y ≺ x → C y) → C x) : C a :=
|
||
acc.rec_on (Hwf a) (λ x₁ ac₁ iH, H x₁ iH)
|
||
|
||
theorem induction {C : A → Type} (a : A) (H : Πx, (Πy, y ≺ x → C y) → C x) : C a :=
|
||
recursion a H
|
||
|
||
variable {C : A → Type}
|
||
variable F : Πx, (Πy, y ≺ x → C y) → C x
|
||
|
||
definition fix_F (x : A) (a : acc R x) : C x :=
|
||
acc.rec_on a (λ x₁ ac₁ iH, F x₁ iH)
|
||
|
||
theorem fix_F_eq (x : A) (r : acc R x) :
|
||
fix_F F x r = F x (λ (y : A) (p : y ≺ x), fix_F F y (acc.inv r p)) :=
|
||
begin
|
||
induction r using acc.drec,
|
||
reflexivity -- proof is star due to proof irrelevance
|
||
end
|
||
end
|
||
|
||
variables {A : Type} {C : A → Type} {R : A → A → Type}
|
||
|
||
-- Well-founded fixpoint
|
||
definition fix [Hwf : well_founded R] (F : Πx, (Πy, R y x → C y) → C x) (x : A) : C x :=
|
||
fix_F F x (Hwf x)
|
||
|
||
-- Well-founded fixpoint satisfies fixpoint equation
|
||
theorem fix_eq [Hwf : well_founded R] (F : Πx, (Πy, R y x → C y) → C x) (x : A) :
|
||
fix F x = F x (λy h, fix F y) :=
|
||
begin
|
||
refine fix_F_eq F x (Hwf x) ⬝ _,
|
||
apply ap (F x),
|
||
apply eq_of_homotopy, intro a,
|
||
apply eq_of_homotopy, intro r,
|
||
apply ap (fix_F F a),
|
||
apply acc.acc_eq
|
||
end
|
||
end well_founded
|
||
|
||
open well_founded
|
||
|
||
-- Empty relation is well-founded
|
||
definition empty.wf {A : Type} : well_founded empty_relation :=
|
||
well_founded.intro (λ (a : A),
|
||
acc.intro a (λ (b : A) (lt : empty), empty.rec _ lt))
|
||
|
||
-- Subrelation of a well-founded relation is well-founded
|
||
namespace subrelation
|
||
section
|
||
universe variable u
|
||
parameters {A : Type} {R Q : A → A → Type}
|
||
parameters (H₁ : subrelation Q R)
|
||
parameters (H₂ : well_founded R)
|
||
|
||
definition accessible {a : A} (ac : acc R a) : acc Q a :=
|
||
using H₁,
|
||
begin
|
||
induction ac with x ax ih, constructor,
|
||
exact λ (y : A) (lt : Q y x), ih y (H₁ lt)
|
||
end
|
||
|
||
definition wf : well_founded Q :=
|
||
well_founded.intro (λ a, accessible proof (@apply A R H₂ a) qed)
|
||
end
|
||
end subrelation
|
||
|
||
-- The inverse image of a well-founded relation is well-founded
|
||
namespace inv_image
|
||
section
|
||
parameters {A B : Type} {R : B → B → Type}
|
||
parameters (f : A → B)
|
||
parameters (H : well_founded R)
|
||
|
||
private definition acc_aux {b : B} (ac : acc R b) : Π x, f x = b → acc (inv_image R f) x :=
|
||
begin
|
||
induction ac with x acx ih,
|
||
intro z e, constructor,
|
||
intro y lt, subst x,
|
||
exact ih (f y) lt y rfl
|
||
end
|
||
|
||
definition accessible {a : A} (ac : acc R (f a)) : acc (inv_image R f) a :=
|
||
acc_aux ac a rfl
|
||
|
||
definition wf : well_founded (inv_image R f) :=
|
||
well_founded.intro (λ a, accessible (H (f a)))
|
||
end
|
||
end inv_image
|
||
|
||
-- The transitive closure of a well-founded relation is well-founded
|
||
namespace tc
|
||
section
|
||
parameters {A : Type} {R : A → A → Type}
|
||
local notation `R⁺` := tc R
|
||
|
||
definition accessible {z} (ac: acc R z) : acc R⁺ z :=
|
||
begin
|
||
induction ac with x acx ih,
|
||
constructor, intro y rel,
|
||
induction rel with a b rab a b c rab rbc ih₁ ih₂,
|
||
{exact ih a rab},
|
||
{exact acc.inv (ih₂ acx ih) rab}
|
||
end
|
||
|
||
definition wf (H : well_founded R) : well_founded R⁺ :=
|
||
well_founded.intro (λ a, accessible (H a))
|
||
end
|
||
end tc
|
||
|
||
namespace nat
|
||
|
||
-- less-than is well-founded
|
||
definition lt.wf [instance] : well_founded (lt : ℕ → ℕ → Type₀) :=
|
||
begin
|
||
constructor, intro n, induction n with n IH,
|
||
{ constructor, intros n H, exfalso, exact !not_lt_zero H},
|
||
{ constructor, intros m H,
|
||
assert aux : ∀ {n₁} (hlt : m < n₁), succ n = n₁ → acc lt m,
|
||
{ intros n₁ hlt, induction hlt,
|
||
{ intro p, injection p with q, exact q ▸ IH},
|
||
{ intro p, injection p with q, exact (acc.inv (q ▸ IH) a)}},
|
||
apply aux H rfl},
|
||
end
|
||
|
||
definition measure {A : Type} : (A → ℕ) → A → A → Type₀ :=
|
||
inv_image lt
|
||
|
||
definition measure.wf {A : Type} (f : A → ℕ) : well_founded (measure f) :=
|
||
inv_image.wf f lt.wf
|
||
|
||
end nat
|
||
|
||
namespace prod
|
||
|
||
open well_founded prod.ops
|
||
|
||
section
|
||
variables {A B : Type}
|
||
variable (Ra : A → A → Type)
|
||
variable (Rb : B → B → Type)
|
||
|
||
-- Lexicographical order based on Ra and Rb
|
||
inductive lex : A × B → A × B → Type :=
|
||
| left : ∀{a₁ b₁} a₂ b₂, Ra a₁ a₂ → lex (a₁, b₁) (a₂, b₂)
|
||
| right : ∀a {b₁ b₂}, Rb b₁ b₂ → lex (a, b₁) (a, b₂)
|
||
|
||
-- Relational product based on Ra and Rb
|
||
inductive rprod : A × B → A × B → Type :=
|
||
intro : ∀{a₁ b₁ a₂ b₂}, Ra a₁ a₂ → Rb b₁ b₂ → rprod (a₁, b₁) (a₂, b₂)
|
||
end
|
||
|
||
section
|
||
parameters {A B : Type}
|
||
parameters {Ra : A → A → Type} {Rb : B → B → Type}
|
||
local infix `≺`:50 := lex Ra Rb
|
||
|
||
definition lex.accessible {a} (aca : acc Ra a) (acb : ∀b, acc Rb b): ∀b, acc (lex Ra Rb) (a, b) :=
|
||
acc.rec_on aca
|
||
(λxa aca (iHa : ∀y, Ra y xa → ∀b, acc (lex Ra Rb) (y, b)),
|
||
λb, acc.rec_on (acb b)
|
||
(λxb acb
|
||
(iHb : ∀y, Rb y xb → acc (lex Ra Rb) (xa, y)),
|
||
acc.intro (xa, xb) (λp (lt : p ≺ (xa, xb)),
|
||
have aux : xa = xa → xb = xb → acc (lex Ra Rb) p, from
|
||
@prod.lex.rec_on A B Ra Rb (λp₁ p₂ h, pr₁ p₂ = xa → pr₂ p₂ = xb → acc (lex Ra Rb) p₁)
|
||
p (xa, xb) lt
|
||
(λa₁ b₁ a₂ b₂ (H : Ra a₁ a₂) (eq₂ : a₂ = xa) (eq₃ : b₂ = xb),
|
||
show acc (lex Ra Rb) (a₁, b₁), from
|
||
have Ra₁ : Ra a₁ xa, from eq.rec_on eq₂ H,
|
||
iHa a₁ Ra₁ b₁)
|
||
(λa b₁ b₂ (H : Rb b₁ b₂) (eq₂ : a = xa) (eq₃ : b₂ = xb),
|
||
show acc (lex Ra Rb) (a, b₁), from
|
||
have Rb₁ : Rb b₁ xb, from eq.rec_on eq₃ H,
|
||
have eq₂' : xa = a, from eq.rec_on eq₂ rfl,
|
||
eq.rec_on eq₂' (iHb b₁ Rb₁)),
|
||
aux rfl rfl)))
|
||
|
||
-- The lexicographical order of well founded relations is well-founded
|
||
definition lex.wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (lex Ra Rb) :=
|
||
well_founded.intro (λp, destruct p (λa b, lex.accessible (Ha a) (well_founded.apply Hb) b))
|
||
|
||
-- Relational product is a subrelation of the lex
|
||
definition rprod.sub_lex : ∀ a b, rprod Ra Rb a b → lex Ra Rb a b :=
|
||
λa b H, prod.rprod.rec_on H (λ a₁ b₁ a₂ b₂ H₁ H₂, lex.left Rb a₂ b₂ H₁)
|
||
|
||
-- The relational product of well founded relations is well-founded
|
||
definition rprod.wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (rprod Ra Rb) :=
|
||
subrelation.wf (rprod.sub_lex) (lex.wf Ha Hb)
|
||
|
||
end
|
||
|
||
end prod
|