lean2/hott/types/pointed.hlean
2015-06-25 22:31:40 -04:00

292 lines
9.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer, Floris van Doorn
Ported from Coq HoTT
-/
import arity .eq .bool .unit .sigma
open is_trunc eq prod sigma nat equiv option is_equiv bool unit
structure pointed [class] (A : Type) :=
(point : A)
structure Pointed :=
{carrier : Type}
(Point : carrier)
open Pointed
namespace pointed
attribute Pointed.carrier [coercion]
variables {A B : Type}
definition pt [unfold-c 2] [H : pointed A] := point A
protected abbreviation Mk [constructor] := @Pointed.mk
protected definition mk' [constructor] (A : Type) [H : pointed A] : Pointed :=
Pointed.mk (point A)
definition pointed_carrier [instance] [constructor] (A : Pointed) : pointed A :=
pointed.mk (Point A)
-- Any contractible type is pointed
definition pointed_of_is_contr [instance] [priority 800] [constructor]
(A : Type) [H : is_contr A] : pointed A :=
pointed.mk !center
-- A pi type with a pointed target is pointed
definition pointed_pi [instance] [constructor] (P : A → Type) [H : Πx, pointed (P x)]
: pointed (Πx, P x) :=
pointed.mk (λx, pt)
-- A sigma type of pointed components is pointed
definition pointed_sigma [instance] [constructor] (P : A → Type) [G : pointed A]
[H : pointed (P pt)] : pointed (Σx, P x) :=
pointed.mk ⟨pt,pt⟩
definition pointed_prod [instance] [constructor] (A B : Type) [H1 : pointed A] [H2 : pointed B]
: pointed (A × B) :=
pointed.mk (pt,pt)
definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) :=
pointed.mk idp
definition pointed_bool [instance] [constructor] : pointed bool :=
pointed.mk ff
definition Bool [constructor] : Pointed :=
pointed.mk' bool
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
pointed.mk (f pt)
definition Loop_space [reducible] [constructor] (A : Pointed) : Pointed :=
pointed.mk' (point A = point A)
-- definition Iterated_loop_space : Pointed → → Pointed
-- | Iterated_loop_space A 0 := A
-- | Iterated_loop_space A (n+1) := Iterated_loop_space (Loop_space A) n
definition Iterated_loop_space [reducible] (n : ) (A : Pointed) : Pointed :=
nat.rec_on n (λA, A) (λn IH A, IH (Loop_space A)) A
prefix `Ω`:(max+5) := Loop_space
notation `Ω[`:95 n:0 `]`:0 A:95 := Iterated_loop_space n A
definition iterated_loop_space (A : Type) [H : pointed A] (n : ) : Type :=
Ω[n] (pointed.mk' A)
open equiv.ops
definition Pointed_eq {A B : Pointed} (f : A ≃ B) (p : f pt = pt) : A = B :=
begin
cases A with A a, cases B with B b, esimp at *,
fapply apd011 @Pointed.mk,
{ apply ua f},
{ rewrite [cast_ua,p]},
end
definition add_point [constructor] (A : Type) : Pointed :=
Pointed.mk (none : option A)
postfix `₊`:(max+1) := add_point
-- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A")
end pointed
open pointed
structure pmap (A B : Pointed) :=
(map : A → B)
(resp_pt : map (Point A) = Point B)
open pmap
namespace pointed
abbreviation respect_pt [unfold-c 3] := @pmap.resp_pt
notation `map₊` := pmap
infix `→*`:30 := pmap
attribute pmap.map [coercion]
variables {A B C D : Pointed} {f g h : A →* B}
definition pmap_eq (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g :=
begin
cases f with f p, cases g with g q,
esimp at *,
fapply apo011 pmap.mk,
{ exact eq_of_homotopy r},
{ apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con,
rewrite [ap_eq_ap10,↑ap10,apd10_eq_of_homotopy,s]}
end
definition pid [constructor] (A : Pointed) : A →* A :=
pmap.mk function.id idp
definition pcompose [constructor] (g : B →* C) (f : A →* B) : A →* C :=
pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g)
infixr `∘*`:60 := pcompose
structure phomotopy (f g : A →* B) :=
(homotopy : f ~ g)
(homotopy_pt : homotopy pt ⬝ respect_pt g = respect_pt f)
infix `~*`:50 := phomotopy
abbreviation to_homotopy_pt [unfold-c 5] := @phomotopy.homotopy_pt
abbreviation to_homotopy [coercion] [unfold-c 5] (p : f ~* g) : Πa, f a = g a :=
phomotopy.homotopy p
definition passoc (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) :=
begin
fconstructor, intro a, reflexivity,
cases A, cases B, cases C, cases D, cases f with f pf, cases g with g pg, cases h with h ph,
esimp at *,
induction pf, induction pg, induction ph, reflexivity
end
definition pid_comp (f : A →* B) : pid B ∘* f ~* f :=
begin
fconstructor,
{ intro a, reflexivity},
{ esimp, exact !idp_con ⬝ !ap_id⁻¹}
end
definition comp_pid (f : A →* B) : f ∘* pid A ~* f :=
begin
fconstructor,
{ intro a, reflexivity},
{ reflexivity}
end
definition pmap_equiv_left (A : Type) (B : Pointed) : A₊ →* B ≃ (A → B) :=
begin
fapply equiv.MK,
{ intro f a, cases f with f p, exact f (some a)},
{ intro f, fconstructor,
intro a, cases a, exact pt, exact f a,
reflexivity},
{ intro f, reflexivity},
{ intro f, cases f with f p, esimp, fapply pmap_eq,
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
{ esimp, exact !con.left_inv⁻¹}},
end
-- definition Loop_space_functor (f : A →* B) : Ω A →* Ω B :=
-- begin
-- fapply pmap.mk,
-- { intro p, exact ap f p},
-- end
-- set_option pp.notation false
-- definition pmap_equiv_right (A : Pointed) (B : Type)
-- : (Σ(b : B), map₊ A (pointed.Mk b)) ≃ (A → B) :=
-- begin
-- fapply equiv.MK,
-- { intro u a, cases u with b f, cases f with f p, esimp at f, exact f a},
-- { intro f, refine ⟨f pt, _⟩, fapply pmap.mk,
-- intro a, esimp, exact f a,
-- reflexivity},
-- { intro f, reflexivity},
-- { intro u, cases u with b f, cases f with f p, esimp at *, apply sigma_eq p,
-- esimp, apply sorry
-- }
-- end
definition pmap_bool_equiv (B : Pointed) : map₊ Bool B ≃ B :=
begin
fapply equiv.MK,
{ intro f, cases f with f p, exact f tt},
{ intro b, fconstructor,
intro u, cases u, exact pt, exact b,
reflexivity},
{ intro b, reflexivity},
{ intro f, cases f with f p, esimp, fapply pmap_eq,
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
{ esimp, exact !con.left_inv⁻¹}},
end
definition apn [constructor] (n : ) (f : map₊ A B) : Ω[n] A →* Ω[n] B :=
begin
revert A B f, induction n with n IH,
{ intros A B f, exact f},
{ intros A B f, rewrite [↑Iterated_loop_space,↓Iterated_loop_space n (Ω A),
↑Iterated_loop_space, ↓Iterated_loop_space n (Ω B)],
apply IH (Ω A),
{ esimp, fconstructor,
intro q, refine !respect_pt⁻¹ ⬝ ap f q ⬝ !respect_pt,
esimp, apply con.left_inv}}
end
definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B := apn (succ 0) f
definition ap1_compose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f :=
begin
induction B, induction C, induction g with g pg, induction f with f pf, esimp at *,
induction pg, induction pf,
fconstructor,
{ intro p, esimp, apply whisker_left, exact ap_compose g f p ⬝ ap (ap g) !idp_con⁻¹},
{ reflexivity}
end
protected definition phomotopy.refl [refl] (f : A →* B) : f ~* f :=
begin
fconstructor,
{ intro a, exact idp},
{ apply idp_con}
end
protected definition phomotopy.trans [trans] (p : f ~* g) (q : g ~* h)
: f ~* h :=
begin
fconstructor,
{ intro a, exact p a ⬝ q a},
{ induction f, induction g, induction p with p p', induction q with q q', esimp at *,
induction p', induction q', esimp, apply con.assoc}
end
protected definition phomotopy.symm [symm] (p : f ~* g) : g ~* f :=
begin
fconstructor,
{ intro a, exact (p a)⁻¹},
{ induction f, induction p with p p', esimp at *,
induction p', esimp, apply inv_con_cancel_left}
end
infix `⬝*`:75 := phomotopy.trans
postfix `⁻¹*`:(max+1) := phomotopy.symm
definition eq_of_phomotopy (p : f ~* g) : f = g :=
begin
fapply pmap_eq,
{ intro a, exact p a},
{ exact !to_homotopy_pt⁻¹}
end
definition pwhisker_left (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g :=
begin
fconstructor,
{ intro a, exact ap h (p a)},
{ induction A, induction B, induction C,
induction f with f pf, induction g with g pg, induction h with h ph,
induction p with p p', esimp at *, induction ph, induction pg, induction p', reflexivity}
end
definition pwhisker_right (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h :=
begin
fconstructor,
{ intro a, exact p (h a)},
{ induction A, induction B, induction C,
induction f with f pf, induction g with g pg, induction h with h ph,
induction p with p p', esimp at *, induction ph, induction pg, induction p', esimp,
exact !idp_con⁻¹}
end
structure pequiv (A B : Pointed) :=
(to_pmap : A →* B)
(is_equiv_to_pmap : is_equiv to_pmap)
infix `≃*`:25 := pequiv
attribute pequiv.to_pmap [coercion]
attribute pequiv.is_equiv_to_pmap [instance]
definition equiv_of_pequiv [constructor] (f : A ≃* B) : A ≃ B :=
equiv.mk f _
end pointed