lean2/library/data/finset/basic.lean
2015-04-11 14:55:41 -07:00

307 lines
11 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.finset
Author: Leonardo de Moura
Finite sets
-/
import data.fintype data.nat data.list.perm data.subtype algebra.binary
open nat quot list subtype binary function
open [declarations] perm
definition nodup_list (A : Type) := {l : list A | nodup l}
variable {A : Type}
definition to_nodup_list_of_nodup {l : list A} (n : nodup l) : nodup_list A :=
tag l n
definition to_nodup_list [h : decidable_eq A] (l : list A) : nodup_list A :=
@to_nodup_list_of_nodup A (erase_dup l) (nodup_erase_dup l)
namespace finset
private definition eqv (l₁ l₂ : nodup_list A) :=
perm (elt_of l₁) (elt_of l₂)
local infix ~ := eqv
private definition eqv.refl (l : nodup_list A) : l ~ l :=
!perm.refl
private definition eqv.symm {l₁ l₂ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₁ :=
assume p, perm.symm p
private definition eqv.trans {l₁ l₂ l₃ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ :=
assume p₁ p₂, perm.trans p₁ p₂
definition nodup_list_setoid [instance] (A : Type) : setoid (nodup_list A) :=
setoid.mk (@eqv A) (mk_equivalence (@eqv A) (@eqv.refl A) (@eqv.symm A) (@eqv.trans A))
definition finset (A : Type) : Type :=
quot (nodup_list_setoid A)
definition to_finset_of_nodup (l : list A) (n : nodup l) : finset A :=
⟦to_nodup_list_of_nodup n⟧
definition to_finset [h : decidable_eq A] (l : list A) : finset A :=
⟦to_nodup_list l⟧
definition has_decidable_eq [instance] [h : decidable_eq A] : decidable_eq (finset A) :=
λ s₁ s₂, quot.rec_on_subsingleton₂ s₁ s₂
(λ l₁ l₂,
match decidable_perm (elt_of l₁) (elt_of l₂) with
| decidable.inl e := decidable.inl (quot.sound e)
| decidable.inr n := decidable.inr (λ e : ⟦l₁⟧ = ⟦l₂⟧, absurd (quot.exact e) n)
end)
definition singleton (a : A) : finset A :=
to_finset_of_nodup [a] !nodup_singleton
definition mem (a : A) (s : finset A) : Prop :=
quot.lift_on s (λ l, a ∈ elt_of l)
(λ l₁ l₂ (e : l₁ ~ l₂), propext (iff.intro
(λ ainl₁, mem_perm e ainl₁)
(λ ainl₂, mem_perm (perm.symm e) ainl₂)))
infix `∈` := mem
notation a ∉ b := ¬ mem a b
theorem mem_of_mem_list {a : A} {l : nodup_list A} : a ∈ elt_of l → a ∈ ⟦l⟧ :=
λ ainl, ainl
theorem mem_list_of_mem {a : A} {l : nodup_list A} : a ∈ ⟦l⟧ → a ∈ elt_of l :=
λ ainl, ainl
theorem mem_singleton (a : A) : a ∈ singleton a :=
mem_of_mem_list !mem_cons
definition decidable_mem [instance] [h : decidable_eq A] : ∀ (a : A) (s : finset A), decidable (a ∈ s) :=
λ a s, quot.rec_on_subsingleton s
(λ l, match list.decidable_mem a (elt_of l) with
| decidable.inl p := decidable.inl (mem_of_mem_list p)
| decidable.inr n := decidable.inr (λ p, absurd (mem_list_of_mem p) n)
end)
theorem mem_to_finset [h : decidable_eq A] {a : A} {l : list A} : a ∈ l → a ∈ to_finset l :=
λ ainl, mem_erase_dup ainl
theorem mem_to_finset_of_nodub {a : A} {l : list A} (n : nodup l) : a ∈ l → a ∈ to_finset_of_nodup l n :=
λ ainl, ainl
/- extensionality -/
theorem ext {s₁ s₂ : finset A} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ e, quot.sound (perm_ext (has_property l₁) (has_property l₂) e))
/- empty -/
definition empty : finset A :=
to_finset_of_nodup [] nodup_nil
notation `∅` := !empty
theorem not_mem_empty (a : A) : a ∉ ∅ :=
λ aine : a ∈ ∅, aine
/- universe -/
definition univ [h : fintype A] : finset A :=
to_finset_of_nodup (@fintype.elems A h) (@fintype.unique A h)
theorem mem_univ [h : fintype A] (x : A) : x ∈ univ :=
fintype.complete x
/- card -/
definition card (s : finset A) : nat :=
quot.lift_on s
(λ l, length (elt_of l))
(λ l₁ l₂ p, length_eq_length_of_perm p)
theorem card_empty : card (@empty A) = 0 :=
rfl
theorem card_singleton (a : A) : card (singleton a) = 1 :=
rfl
/- insert -/
section insert
variable [h : decidable_eq A]
include h
definition insert (a : A) (s : finset A) : finset A :=
quot.lift_on s
(λ l, to_finset_of_nodup (insert a (elt_of l)) (nodup_insert a (has_property l)))
(λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (perm_insert a p))
theorem mem_insert (a : A) (s : finset A) : a ∈ insert a s :=
quot.induction_on s
(λ l : nodup_list A, mem_to_finset_of_nodub _ !list.mem_insert)
theorem mem_insert_of_mem {a : A} {s : finset A} (b : A) : a ∈ s → a ∈ insert b s :=
quot.induction_on s
(λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), mem_to_finset_of_nodub _ (list.mem_insert_of_mem _ ainl))
theorem card_insert_of_mem {a : A} {s : finset A} : a ∈ s → card (insert a s) = card s :=
quot.induction_on s
(λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), list.length_insert_of_mem ainl)
theorem card_insert_of_not_mem {a : A} {s : finset A} : a ∉ s → card (insert a s) = card s + 1 :=
quot.induction_on s
(λ (l : nodup_list A) (nainl : a ∉ ⟦l⟧), list.length_insert_of_not_mem nainl)
end insert
/- erase -/
section erase
variable [h : decidable_eq A]
include h
definition erase (a : A) (s : finset A) : finset A :=
quot.lift_on s
(λ l, to_finset_of_nodup (erase a (elt_of l)) (nodup_erase_of_nodup a (has_property l)))
(λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (erase_perm_erase_of_perm a p))
theorem mem_erase (a : A) (s : finset A) : a ∉ erase a s :=
quot.induction_on s
(λ l, list.mem_erase_of_nodup _ (has_property l))
theorem card_erase_of_mem {a : A} {s : finset A} : a ∈ s → card (erase a s) = pred (card s) :=
quot.induction_on s (λ l ainl, list.length_erase_of_mem ainl)
theorem card_erase_of_not_mem {a : A} {s : finset A} : a ∉ s → card (erase a s) = card s :=
quot.induction_on s (λ l nainl, list.length_erase_of_not_mem nainl)
end erase
/- disjoint -/
definition disjoint (s₁ s₂ : finset A) : Prop :=
quot.lift_on₂ s₁ s₂ (λ l₁ l₂, disjoint (elt_of l₁) (elt_of l₂))
(λ v₁ v₂ w₁ w₂ p₁ p₂, propext (iff.intro
(λ d₁ a (ainw₁ : a ∈ elt_of w₁),
have ainv₁ : a ∈ elt_of v₁, from mem_perm (perm.symm p₁) ainw₁,
have nainv₂ : a ∉ elt_of v₂, from disjoint_left d₁ ainv₁,
not_mem_perm p₂ nainv₂)
(λ d₂ a (ainv₁ : a ∈ elt_of v₁),
have ainw₁ : a ∈ elt_of w₁, from mem_perm p₁ ainv₁,
have nainw₂ : a ∉ elt_of w₂, from disjoint_left d₂ ainw₁,
not_mem_perm (perm.symm p₂) nainw₂)))
theorem disjoint.comm {s₁ s₂ : finset A} : disjoint s₁ s₂ → disjoint s₂ s₁ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ d, list.disjoint.comm d)
/- union -/
section union
variable [h : decidable_eq A]
include h
definition union (s₁ s₂ : finset A) : finset A :=
quot.lift_on₂ s₁ s₂
(λ l₁ l₂,
to_finset_of_nodup (list.union (elt_of l₁) (elt_of l₂))
(nodup_union_of_nodup_of_nodup (has_property l₁) (has_property l₂)))
(λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_union p₁ p₂))
notation s₁ s₂ := union s₁ s₂
theorem mem_union_left {a : A} {s₁ : finset A} (s₂ : finset A) : a ∈ s₁ → a ∈ s₁ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁, list.mem_union_left _ ainl₁)
theorem mem_union_right {a : A} {s₂ : finset A} (s₁ : finset A) : a ∈ s₂ → a ∈ s₁ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₂, list.mem_union_right _ ainl₂)
theorem mem_or_mem_of_mem_union {a : A} {s₁ s₂ : finset A} : a ∈ s₁ s₂ → a ∈ s₁ a ∈ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_or_mem_of_mem_union ainl₁l₂)
theorem mem_union_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ s₂) = (a ∈ s₁ a ∈ s₂) :=
propext (iff.intro
(λ h, mem_or_mem_of_mem_union h)
(λ d, or.elim d
(λ i, mem_union_left _ i)
(λ i, mem_union_right _ i)))
theorem union.comm (s₁ s₂ : finset A) : s₁ s₂ = s₂ s₁ :=
ext (λ a, by rewrite [*mem_union_eq]; exact or.comm)
theorem union.assoc (s₁ s₂ s₃ : finset A) : (s₁ s₂) s₃ = s₁ (s₂ s₃) :=
ext (λ a, by rewrite [*mem_union_eq]; exact or.assoc)
theorem union_self (s : finset A) : s s = s :=
ext (λ a, iff.intro
(λ ain, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, i))
(λ i, mem_union_left _ i))
theorem union_empty (s : finset A) : s ∅ = s :=
ext (λ a, iff.intro
(λ ain : a ∈ s ∅, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, absurd i !not_mem_empty))
(λ i : a ∈ s, mem_union_left _ i))
theorem empty_union (s : finset A) : ∅ s = s :=
calc ∅ s = s ∅ : union.comm
... = s : union_empty
end union
/- intersection -/
section intersection
variable [h : decidable_eq A]
include h
definition intersection (s₁ s₂ : finset A) : finset A :=
quot.lift_on₂ s₁ s₂
(λ l₁ l₂,
to_finset_of_nodup (list.intersection (elt_of l₁) (elt_of l₂))
(nodup_intersection_of_nodup _ (has_property l₁)))
(λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_intersection p₁ p₂))
notation s₁ ∩ s₂ := intersection s₁ s₂
theorem mem_of_mem_intersection_left {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∩ s₂ → a ∈ s₁ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_of_mem_intersection_left ainl₁l₂)
theorem mem_of_mem_intersection_right {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∩ s₂ → a ∈ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_of_mem_intersection_right ainl₁l₂)
theorem mem_intersection_of_mem_of_mem {a : A} {s₁ s₂ : finset A} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁ ainl₂, list.mem_intersection_of_mem_of_mem ainl₁ ainl₂)
theorem mem_intersection_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ ∩ s₂) = (a ∈ s₁ ∧ a ∈ s₂) :=
propext (iff.intro
(λ h, and.intro (mem_of_mem_intersection_left h) (mem_of_mem_intersection_right h))
(λ h, mem_intersection_of_mem_of_mem (and.elim_left h) (and.elim_right h)))
theorem intersection.comm (s₁ s₂ : finset A) : s₁ ∩ s₂ = s₂ ∩ s₁ :=
ext (λ a, by rewrite [*mem_intersection_eq]; exact and.comm)
theorem intersection.assoc (s₁ s₂ s₃ : finset A) : (s₁ ∩ s₂) ∩ s₃ = s₁ ∩ (s₂ ∩ s₃) :=
ext (λ a, by rewrite [*mem_intersection_eq]; exact and.assoc)
theorem intersection_self (s : finset A) : s ∩ s = s :=
ext (λ a, iff.intro
(λ h, mem_of_mem_intersection_right h)
(λ h, mem_intersection_of_mem_of_mem h h))
theorem intersection_empty (s : finset A) : s ∩ ∅ = ∅ :=
ext (λ a, iff.intro
(λ h : a ∈ s ∩ ∅, absurd (mem_of_mem_intersection_right h) !not_mem_empty)
(λ h : a ∈ ∅, absurd h !not_mem_empty))
theorem empty_intersection (s : finset A) : ∅ ∩ s = ∅ :=
calc ∅ ∩ s = s ∩ ∅ : intersection.comm
... = ∅ : intersection_empty
end intersection
/- upto -/
section upto
definition upto (n : nat) : finset nat :=
to_finset_of_nodup (list.upto n) (nodup_upto n)
theorem card_upto : ∀ n, card (upto n) = n :=
list.length_upto
theorem lt_of_mem_upto {n a : nat} : a ∈ upto n → a < n :=
list.lt_of_mem_upto
theorem mem_upto_succ_of_mem_upto {n a : nat} : a ∈ upto n → a ∈ upto (succ n) :=
list.mem_upto_succ_of_mem_upto
theorem mem_upto_of_lt {n a : nat} : a < n → a ∈ upto n :=
list.mem_upto_of_lt
end upto
end finset