8dec18018c
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
150 lines
5.3 KiB
Text
150 lines
5.3 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Authors: Jeremy Avigad, Leonardo de Moura
|
||
|
||
-- logic.connectives.identities
|
||
-- ============================
|
||
|
||
-- Useful logical identities. In the absence of propositional extensionality, some of the
|
||
-- calculations use the type class support provided by logic.connectives.instances
|
||
|
||
import logic.core.instances logic.classes.decidable logic.core.quantifiers logic.core.cast
|
||
|
||
using relation decidable relation.iff_ops
|
||
|
||
theorem or_right_comm (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b :=
|
||
calc
|
||
(a ∨ b) ∨ c ↔ a ∨ (b ∨ c) : or_assoc
|
||
... ↔ a ∨ (c ∨ b) : {or_comm}
|
||
... ↔ (a ∨ c) ∨ b : iff_symm or_assoc
|
||
|
||
theorem or_left_comm (a b c : Prop) : a ∨ (b ∨ c)↔ b ∨ (a ∨ c) :=
|
||
calc
|
||
a ∨ (b ∨ c) ↔ (a ∨ b) ∨ c : iff_symm or_assoc
|
||
... ↔ (b ∨ a) ∨ c : {or_comm}
|
||
... ↔ b ∨ (a ∨ c) : or_assoc
|
||
|
||
theorem and_right_comm (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b :=
|
||
calc
|
||
(a ∧ b) ∧ c ↔ a ∧ (b ∧ c) : and_assoc
|
||
... ↔ a ∧ (c ∧ b) : {and_comm}
|
||
... ↔ (a ∧ c) ∧ b : iff_symm and_assoc
|
||
|
||
theorem and_left_comm (a b c : Prop) : a ∧ (b ∧ c)↔ b ∧ (a ∧ c) :=
|
||
calc
|
||
a ∧ (b ∧ c) ↔ (a ∧ b) ∧ c : iff_symm and_assoc
|
||
... ↔ (b ∧ a) ∧ c : {and_comm}
|
||
... ↔ b ∧ (a ∧ c) : and_assoc
|
||
|
||
|
||
theorem not_not_iff {a : Prop} {D : decidable a} : (¬¬a) ↔ a :=
|
||
iff_intro
|
||
(assume H : ¬¬a,
|
||
by_cases (assume H' : a, H') (assume H' : ¬a, absurd H' H))
|
||
(assume H : a, assume H', H' H)
|
||
|
||
theorem not_not_elim {a : Prop} {D : decidable a} (H : ¬¬a) : a :=
|
||
iff_mp not_not_iff H
|
||
|
||
theorem not_true : (¬true) ↔ false :=
|
||
iff_intro (assume H, H trivial) false_elim
|
||
|
||
theorem not_false : (¬false) ↔ true :=
|
||
iff_intro (assume H, trivial) (assume H H', H')
|
||
|
||
theorem not_or {a b : Prop} {Da : decidable a} {Db : decidable b} : (¬(a ∨ b)) ↔ (¬a ∧ ¬b) :=
|
||
iff_intro
|
||
(assume H, or_elim (em a)
|
||
(assume Ha, absurd (or_inl Ha) H)
|
||
(assume Hna, or_elim (em b)
|
||
(assume Hb, absurd (or_inr Hb) H)
|
||
(assume Hnb, and_intro Hna Hnb)))
|
||
(assume (H : ¬a ∧ ¬b) (N : a ∨ b),
|
||
or_elim N
|
||
(assume Ha, absurd Ha (and_elim_left H))
|
||
(assume Hb, absurd Hb (and_elim_right H)))
|
||
|
||
theorem not_and {a b : Prop} {Da : decidable a} {Db : decidable b} : (¬(a ∧ b)) ↔ (¬a ∨ ¬b) :=
|
||
iff_intro
|
||
(assume H, or_elim (em a)
|
||
(assume Ha, or_elim (em b)
|
||
(assume Hb, absurd (and_intro Ha Hb) H)
|
||
(assume Hnb, or_inr Hnb))
|
||
(assume Hna, or_inl Hna))
|
||
(assume (H : ¬a ∨ ¬b) (N : a ∧ b),
|
||
or_elim H
|
||
(assume Hna, absurd (and_elim_left N) Hna)
|
||
(assume Hnb, absurd (and_elim_right N) Hnb))
|
||
|
||
theorem imp_or {a b : Prop} {Da : decidable a} : (a → b) ↔ (¬a ∨ b) :=
|
||
iff_intro
|
||
(assume H : a → b, (or_elim (em a)
|
||
(assume Ha : a, or_inr (H Ha))
|
||
(assume Hna : ¬a, or_inl Hna)))
|
||
(assume (H : ¬a ∨ b) (Ha : a),
|
||
resolve_right H (not_not_iff⁻¹ ▸ Ha))
|
||
|
||
theorem not_implies {a b : Prop} {Da : decidable a} {Db : decidable b} : (¬(a → b)) ↔ (a ∧ ¬b) :=
|
||
calc (¬(a → b)) ↔ (¬(¬a ∨ b)) : {imp_or}
|
||
... ↔ (¬¬a ∧ ¬b) : not_or
|
||
... ↔ (a ∧ ¬b) : {not_not_iff}
|
||
|
||
theorem peirce {a b : Prop} {D : decidable a} : ((a → b) → a) → a :=
|
||
assume H, by_contradiction (assume Hna : ¬a,
|
||
have Hnna : ¬¬a, from not_implies_left (mt H Hna),
|
||
absurd (not_not_elim Hnna) Hna)
|
||
|
||
theorem not_exists_forall {A : Type} {P : A → Prop} {D : ∀x, decidable (P x)}
|
||
(H : ¬∃x, P x) : ∀x, ¬P x :=
|
||
-- TODO: when type class instances can use quantifiers, we can use write em
|
||
take x, or_elim (@em _ (D x))
|
||
(assume Hp : P x, absurd (exists_intro x Hp) H)
|
||
(assume Hn : ¬P x, Hn)
|
||
|
||
theorem not_forall_exists {A : Type} {P : A → Prop} {D : ∀x, decidable (P x)}
|
||
{D' : decidable (∃x, ¬P x)} (H : ¬∀x, P x) :
|
||
∃x, ¬P x :=
|
||
@by_contradiction _ D' (assume H1 : ¬∃x, ¬P x,
|
||
have H2 : ∀x, ¬¬P x, from @not_exists_forall _ _ (take x, not_decidable (D x)) H1,
|
||
have H3 : ∀x, P x, from take x, @not_not_elim _ (D x) (H2 x),
|
||
absurd H3 H)
|
||
|
||
theorem iff_true_intro {a : Prop} (H : a) : a ↔ true :=
|
||
iff_intro
|
||
(assume H1 : a, trivial)
|
||
(assume H2 : true, H)
|
||
|
||
theorem iff_false_intro {a : Prop} (H : ¬a) : a ↔ false :=
|
||
iff_intro
|
||
(assume H1 : a, absurd H1 H)
|
||
(assume H2 : false, false_elim H2)
|
||
|
||
theorem a_neq_a {A : Type} (a : A) : (a ≠ a) ↔ false :=
|
||
iff_intro
|
||
(assume H, a_neq_a_elim H)
|
||
(assume H, false_elim H)
|
||
|
||
theorem eq_id {A : Type} (a : A) : (a = a) ↔ true :=
|
||
iff_true_intro (refl a)
|
||
|
||
theorem heq_id {A : Type} (a : A) : (a == a) ↔ true :=
|
||
iff_true_intro (hrefl a)
|
||
|
||
theorem a_iff_not_a (a : Prop) : (a ↔ ¬a) ↔ false :=
|
||
iff_intro
|
||
(assume H,
|
||
have H' : ¬a, from assume Ha, (H ▸ Ha) Ha,
|
||
H' (H⁻¹ ▸ H'))
|
||
(assume H, false_elim H)
|
||
|
||
theorem true_eq_false : (true ↔ false) ↔ false :=
|
||
not_true ▸ (a_iff_not_a true)
|
||
|
||
theorem false_eq_true : (false ↔ true) ↔ false :=
|
||
not_false ▸ (a_iff_not_a false)
|
||
|
||
theorem a_eq_true (a : Prop) : (a ↔ true) ↔ a :=
|
||
iff_intro (assume H, iff_true_elim H) (assume H, iff_true_intro H)
|
||
|
||
theorem a_eq_false (a : Prop) : (a ↔ false) ↔ ¬a :=
|
||
iff_intro (assume H, iff_false_elim H) (assume H, iff_false_intro H)
|