lean2/library/data/list/sort.lean
2016-02-04 11:03:28 -08:00

202 lines
8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Naive sort for lists
-/
import data.list.comb data.list.set data.list.perm data.list.sorted logic.connectives algebra.order
namespace list
open decidable nat
variables {B A : Type}
variable (R : A → A → Prop)
variable [decR : decidable_rel R]
include decR
definition min_core : list A → A → A
| [] a := a
| (b::l) a := if R b a then min_core l b else min_core l a
definition min : Π (l : list A), l ≠ nil → A
| [] h := absurd rfl h
| (a::l) h := min_core R l a
variable [decA : decidable_eq A]
include decA
variable {R}
variables (to : total R) (tr : transitive R) (rf : reflexive R)
lemma min_core_lemma : ∀ {b l} a, b ∈ l b = a → R (min_core R l a) b
| b [] a h := or.elim h
(suppose b ∈ [], absurd this !not_mem_nil)
(suppose b = a,
assert R a a, from rf a,
begin subst b, unfold min_core, assumption end)
| b (c::l) a h := or.elim h
(suppose b ∈ c :: l, or.elim (eq_or_mem_of_mem_cons this)
(suppose b = c,
or.elim (em (R c a))
(suppose R c a,
assert R (min_core R l b) b, from min_core_lemma _ (or.inr rfl),
begin unfold min_core, rewrite [if_pos `R c a`], subst c, assumption end)
(suppose ¬ R c a,
assert R a c, from or_resolve_right (to c a) this,
assert R (min_core R l a) a, from min_core_lemma _ (or.inr rfl),
assert R (min_core R l a) c, from tr this `R a c`,
begin unfold min_core, rewrite [if_neg `¬ R c a`], subst b, exact `R (min_core R l a) c` end))
(suppose b ∈ l,
or.elim (em (R c a))
(suppose R c a,
assert R (min_core R l c) b, from min_core_lemma _ (or.inl `b ∈ l`),
begin unfold min_core, rewrite [if_pos `R c a`], assumption end)
(suppose ¬ R c a,
assert R (min_core R l a) b, from min_core_lemma _ (or.inl `b ∈ l`),
begin unfold min_core, rewrite [if_neg `¬ R c a`], assumption end)))
(suppose b = a,
assert R (min_core R l a) b, from min_core_lemma _ (or.inr this),
or.elim (em (R c a))
(suppose R c a,
assert R (min_core R l c) c, from min_core_lemma _ (or.inr rfl),
assert R (min_core R l c) a, from tr this `R c a`,
begin unfold min_core, rewrite [if_pos `R c a`], subst b, exact `R (min_core R l c) a` end)
(suppose ¬ R c a, begin unfold min_core, rewrite [if_neg `¬ R c a`], assumption end))
lemma min_core_le_of_mem {b : A} {l : list A} (a : A) : b ∈ l → R (min_core R l a) b :=
assume h : b ∈ l, min_core_lemma to tr rf a (or.inl h)
lemma min_core_le {l : list A} (a : A) : R (min_core R l a) a :=
min_core_lemma to tr rf a (or.inr rfl)
lemma min_lemma : ∀ {l} (h : l ≠ nil), all l (R (min R l h))
| [] h := absurd rfl h
| (b::l) h :=
all_of_forall (take x, suppose x ∈ b::l,
or.elim (eq_or_mem_of_mem_cons this)
(suppose x = b,
assert R (min_core R l b) b, from min_core_le to tr rf b,
begin subst x, unfold min, assumption end)
(suppose x ∈ l,
assert R (min_core R l b) x, from min_core_le_of_mem to tr rf _ this,
begin unfold min, assumption end))
variable (R)
lemma min_core_mem : ∀ l a, min_core R l a ∈ l min_core R l a = a
| [] a := or.inr rfl
| (b::l) a := or.elim (em (R b a))
(suppose R b a,
begin
unfold min_core, rewrite [if_pos `R b a`],
apply or.elim (min_core_mem l b),
suppose min_core R l b ∈ l, or.inl (mem_cons_of_mem _ this),
suppose min_core R l b = b, by rewrite this; exact or.inl !mem_cons
end)
(suppose ¬ R b a,
begin
unfold min_core, rewrite [if_neg `¬ R b a`],
apply or.elim (min_core_mem l a),
suppose min_core R l a ∈ l, or.inl (mem_cons_of_mem _ this),
suppose min_core R l a = a, or.inr this
end)
lemma min_mem : ∀ (l : list A) (h : l ≠ nil), min R l h ∈ l
| [] h := absurd rfl h
| (a::l) h :=
begin
unfold min,
apply or.elim (min_core_mem R l a),
suppose min_core R l a ∈ l, mem_cons_of_mem _ this,
suppose min_core R l a = a, by rewrite this; apply mem_cons
end
lemma min_map (f : B → A) {l : list B} (h : l ≠ nil) :
all l (λ b, (R (min R (map f l) (map_ne_nil_of_ne_nil _ h))) (f b)):=
using to tr rf,
begin
apply all_of_forall,
intro b Hb,
have Hfa : all (map f l) (R (min R (map f l) (map_ne_nil_of_ne_nil _ h))), from min_lemma to tr rf _,
have Hfb : f b ∈ map f l, from mem_map _ Hb,
exact of_mem_of_all Hfb Hfa
end
lemma min_map_all (f : B → A) {l : list B} (h : l ≠ nil) {b : B} (Hb : b ∈ l) :
R (min R (map f l) ((map_ne_nil_of_ne_nil _ h))) (f b) :=
of_mem_of_all Hb (min_map _ to tr rf f h)
omit decR
private lemma ne_nil {l : list A} {n : nat} : length l = succ n → l ≠ nil :=
assume h₁ h₂, by rewrite h₂ at h₁; contradiction
include decR
lemma sort_aux_lemma {l n} (h : length l = succ n) : length (erase (min R l (ne_nil h)) l) = n :=
have min R l _ ∈ l, from min_mem R l (ne_nil h),
assert length (erase (min R l _) l) = pred (length l), from length_erase_of_mem this,
by rewrite h at this; exact this
definition sort_aux : Π (n : nat) (l : list A), length l = n → list A
| 0 l h := []
| (succ n) l h :=
let m := min R l (ne_nil h) in
let l₁ := erase m l in
m :: sort_aux n l₁ (sort_aux_lemma R h)
definition sort (l : list A) : list A :=
sort_aux R (length l) l rfl
open perm
lemma sort_aux_perm : ∀ {n : nat} {l : list A} (h : length l = n), sort_aux R n l h ~ l
| 0 l h := by rewrite [↑sort_aux, eq_nil_of_length_eq_zero h]
| (succ n) l h :=
let m := min R l (ne_nil h) in
assert leq : length (erase m l) = n, from sort_aux_lemma R h,
calc m :: sort_aux R n (erase m l) leq
~ m :: erase m l : perm.skip m (sort_aux_perm leq)
... ~ l : perm_erase (min_mem _ _ _)
lemma sort_perm (l : list A) : sort R l ~ l :=
sort_aux_perm R rfl
lemma strongly_sorted_sort_aux : ∀ {n : nat} {l : list A} (h : length l = n), strongly_sorted R (sort_aux R n l h)
| 0 l h := !strongly_sorted.base
| (succ n) l h :=
let m := min R l (ne_nil h) in
assert leq : length (erase m l) = n, from sort_aux_lemma R h,
assert ss : strongly_sorted R (sort_aux R n (erase m l) leq), from strongly_sorted_sort_aux leq,
assert all l (R m), from min_lemma to tr rf (ne_nil h),
assert hall : all (sort_aux R n (erase m l) leq) (R m), from
all_of_forall (take x,
suppose x ∈ sort_aux R n (erase m l) leq,
have x ∈ erase m l, from mem_perm (sort_aux_perm R leq) this,
have x ∈ l, from mem_of_mem_erase this,
show R m x, from of_mem_of_all this `all l (R m)`),
strongly_sorted.step hall ss
variable {R}
lemma strongly_sorted_sort_core (to : total R) (tr : transitive R) (rf : reflexive R) (l : list A) : strongly_sorted R (sort R l) :=
@strongly_sorted_sort_aux _ _ _ _ to tr rf (length l) l rfl
lemma sort_eq_of_perm_core {l₁ l₂ : list A} (to : total R) (tr : transitive R) (rf : reflexive R) (asy : anti_symmetric R) (h : l₁ ~ l₂) : sort R l₁ = sort R l₂ :=
have s₁ : sorted R (sort R l₁), from sorted_of_strongly_sorted (strongly_sorted_sort_core to tr rf l₁),
have s₂ : sorted R (sort R l₂), from sorted_of_strongly_sorted (strongly_sorted_sort_core to tr rf l₂),
have p : sort R l₁ ~ sort R l₂, from calc
sort R l₁ ~ l₁ : sort_perm
... ~ l₂ : h
... ~ sort R l₂ : sort_perm,
eq_of_sorted_of_perm tr asy p s₁ s₂
section
omit decR
lemma strongly_sorted_sort [decidable_linear_order A] (l : list A) : strongly_sorted le (sort le l) :=
strongly_sorted_sort_core le.total (@le.trans A _) le.refl l
lemma sort_eq_of_perm {l₁ l₂ : list A} [decidable_linear_order A] (h : l₁ ~ l₂) : sort le l₁ = sort le l₂ :=
sort_eq_of_perm_core le.total (@le.trans A _) le.refl (@le.antisymm A _) h
end
end list