202 lines
8 KiB
Text
202 lines
8 KiB
Text
/-
|
||
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Leonardo de Moura
|
||
|
||
Naive sort for lists
|
||
-/
|
||
import data.list.comb data.list.set data.list.perm data.list.sorted logic.connectives algebra.order
|
||
|
||
namespace list
|
||
open decidable nat
|
||
|
||
variables {B A : Type}
|
||
variable (R : A → A → Prop)
|
||
variable [decR : decidable_rel R]
|
||
include decR
|
||
|
||
definition min_core : list A → A → A
|
||
| [] a := a
|
||
| (b::l) a := if R b a then min_core l b else min_core l a
|
||
|
||
definition min : Π (l : list A), l ≠ nil → A
|
||
| [] h := absurd rfl h
|
||
| (a::l) h := min_core R l a
|
||
|
||
variable [decA : decidable_eq A]
|
||
include decA
|
||
|
||
variable {R}
|
||
variables (to : total R) (tr : transitive R) (rf : reflexive R)
|
||
|
||
lemma min_core_lemma : ∀ {b l} a, b ∈ l ∨ b = a → R (min_core R l a) b
|
||
| b [] a h := or.elim h
|
||
(suppose b ∈ [], absurd this !not_mem_nil)
|
||
(suppose b = a,
|
||
assert R a a, from rf a,
|
||
begin subst b, unfold min_core, assumption end)
|
||
| b (c::l) a h := or.elim h
|
||
(suppose b ∈ c :: l, or.elim (eq_or_mem_of_mem_cons this)
|
||
(suppose b = c,
|
||
or.elim (em (R c a))
|
||
(suppose R c a,
|
||
assert R (min_core R l b) b, from min_core_lemma _ (or.inr rfl),
|
||
begin unfold min_core, rewrite [if_pos `R c a`], subst c, assumption end)
|
||
(suppose ¬ R c a,
|
||
assert R a c, from or_resolve_right (to c a) this,
|
||
assert R (min_core R l a) a, from min_core_lemma _ (or.inr rfl),
|
||
assert R (min_core R l a) c, from tr this `R a c`,
|
||
begin unfold min_core, rewrite [if_neg `¬ R c a`], subst b, exact `R (min_core R l a) c` end))
|
||
(suppose b ∈ l,
|
||
or.elim (em (R c a))
|
||
(suppose R c a,
|
||
assert R (min_core R l c) b, from min_core_lemma _ (or.inl `b ∈ l`),
|
||
begin unfold min_core, rewrite [if_pos `R c a`], assumption end)
|
||
(suppose ¬ R c a,
|
||
assert R (min_core R l a) b, from min_core_lemma _ (or.inl `b ∈ l`),
|
||
begin unfold min_core, rewrite [if_neg `¬ R c a`], assumption end)))
|
||
(suppose b = a,
|
||
assert R (min_core R l a) b, from min_core_lemma _ (or.inr this),
|
||
or.elim (em (R c a))
|
||
(suppose R c a,
|
||
assert R (min_core R l c) c, from min_core_lemma _ (or.inr rfl),
|
||
assert R (min_core R l c) a, from tr this `R c a`,
|
||
begin unfold min_core, rewrite [if_pos `R c a`], subst b, exact `R (min_core R l c) a` end)
|
||
(suppose ¬ R c a, begin unfold min_core, rewrite [if_neg `¬ R c a`], assumption end))
|
||
|
||
lemma min_core_le_of_mem {b : A} {l : list A} (a : A) : b ∈ l → R (min_core R l a) b :=
|
||
assume h : b ∈ l, min_core_lemma to tr rf a (or.inl h)
|
||
|
||
lemma min_core_le {l : list A} (a : A) : R (min_core R l a) a :=
|
||
min_core_lemma to tr rf a (or.inr rfl)
|
||
|
||
lemma min_lemma : ∀ {l} (h : l ≠ nil), all l (R (min R l h))
|
||
| [] h := absurd rfl h
|
||
| (b::l) h :=
|
||
all_of_forall (take x, suppose x ∈ b::l,
|
||
or.elim (eq_or_mem_of_mem_cons this)
|
||
(suppose x = b,
|
||
assert R (min_core R l b) b, from min_core_le to tr rf b,
|
||
begin subst x, unfold min, assumption end)
|
||
(suppose x ∈ l,
|
||
assert R (min_core R l b) x, from min_core_le_of_mem to tr rf _ this,
|
||
begin unfold min, assumption end))
|
||
|
||
variable (R)
|
||
|
||
lemma min_core_mem : ∀ l a, min_core R l a ∈ l ∨ min_core R l a = a
|
||
| [] a := or.inr rfl
|
||
| (b::l) a := or.elim (em (R b a))
|
||
(suppose R b a,
|
||
begin
|
||
unfold min_core, rewrite [if_pos `R b a`],
|
||
apply or.elim (min_core_mem l b),
|
||
suppose min_core R l b ∈ l, or.inl (mem_cons_of_mem _ this),
|
||
suppose min_core R l b = b, by rewrite this; exact or.inl !mem_cons
|
||
end)
|
||
(suppose ¬ R b a,
|
||
begin
|
||
unfold min_core, rewrite [if_neg `¬ R b a`],
|
||
apply or.elim (min_core_mem l a),
|
||
suppose min_core R l a ∈ l, or.inl (mem_cons_of_mem _ this),
|
||
suppose min_core R l a = a, or.inr this
|
||
end)
|
||
|
||
lemma min_mem : ∀ (l : list A) (h : l ≠ nil), min R l h ∈ l
|
||
| [] h := absurd rfl h
|
||
| (a::l) h :=
|
||
begin
|
||
unfold min,
|
||
apply or.elim (min_core_mem R l a),
|
||
suppose min_core R l a ∈ l, mem_cons_of_mem _ this,
|
||
suppose min_core R l a = a, by rewrite this; apply mem_cons
|
||
end
|
||
|
||
|
||
lemma min_map (f : B → A) {l : list B} (h : l ≠ nil) :
|
||
all l (λ b, (R (min R (map f l) (map_ne_nil_of_ne_nil _ h))) (f b)):=
|
||
using to tr rf,
|
||
begin
|
||
apply all_of_forall,
|
||
intro b Hb,
|
||
have Hfa : all (map f l) (R (min R (map f l) (map_ne_nil_of_ne_nil _ h))), from min_lemma to tr rf _,
|
||
have Hfb : f b ∈ map f l, from mem_map _ Hb,
|
||
exact of_mem_of_all Hfb Hfa
|
||
end
|
||
|
||
lemma min_map_all (f : B → A) {l : list B} (h : l ≠ nil) {b : B} (Hb : b ∈ l) :
|
||
R (min R (map f l) ((map_ne_nil_of_ne_nil _ h))) (f b) :=
|
||
of_mem_of_all Hb (min_map _ to tr rf f h)
|
||
|
||
omit decR
|
||
private lemma ne_nil {l : list A} {n : nat} : length l = succ n → l ≠ nil :=
|
||
assume h₁ h₂, by rewrite h₂ at h₁; contradiction
|
||
|
||
include decR
|
||
lemma sort_aux_lemma {l n} (h : length l = succ n) : length (erase (min R l (ne_nil h)) l) = n :=
|
||
have min R l _ ∈ l, from min_mem R l (ne_nil h),
|
||
assert length (erase (min R l _) l) = pred (length l), from length_erase_of_mem this,
|
||
by rewrite h at this; exact this
|
||
|
||
definition sort_aux : Π (n : nat) (l : list A), length l = n → list A
|
||
| 0 l h := []
|
||
| (succ n) l h :=
|
||
let m := min R l (ne_nil h) in
|
||
let l₁ := erase m l in
|
||
m :: sort_aux n l₁ (sort_aux_lemma R h)
|
||
|
||
definition sort (l : list A) : list A :=
|
||
sort_aux R (length l) l rfl
|
||
|
||
open perm
|
||
|
||
lemma sort_aux_perm : ∀ {n : nat} {l : list A} (h : length l = n), sort_aux R n l h ~ l
|
||
| 0 l h := by rewrite [↑sort_aux, eq_nil_of_length_eq_zero h]
|
||
| (succ n) l h :=
|
||
let m := min R l (ne_nil h) in
|
||
assert leq : length (erase m l) = n, from sort_aux_lemma R h,
|
||
calc m :: sort_aux R n (erase m l) leq
|
||
~ m :: erase m l : perm.skip m (sort_aux_perm leq)
|
||
... ~ l : perm_erase (min_mem _ _ _)
|
||
|
||
lemma sort_perm (l : list A) : sort R l ~ l :=
|
||
sort_aux_perm R rfl
|
||
|
||
lemma strongly_sorted_sort_aux : ∀ {n : nat} {l : list A} (h : length l = n), strongly_sorted R (sort_aux R n l h)
|
||
| 0 l h := !strongly_sorted.base
|
||
| (succ n) l h :=
|
||
let m := min R l (ne_nil h) in
|
||
assert leq : length (erase m l) = n, from sort_aux_lemma R h,
|
||
assert ss : strongly_sorted R (sort_aux R n (erase m l) leq), from strongly_sorted_sort_aux leq,
|
||
assert all l (R m), from min_lemma to tr rf (ne_nil h),
|
||
assert hall : all (sort_aux R n (erase m l) leq) (R m), from
|
||
all_of_forall (take x,
|
||
suppose x ∈ sort_aux R n (erase m l) leq,
|
||
have x ∈ erase m l, from mem_perm (sort_aux_perm R leq) this,
|
||
have x ∈ l, from mem_of_mem_erase this,
|
||
show R m x, from of_mem_of_all this `all l (R m)`),
|
||
strongly_sorted.step hall ss
|
||
|
||
variable {R}
|
||
|
||
lemma strongly_sorted_sort_core (to : total R) (tr : transitive R) (rf : reflexive R) (l : list A) : strongly_sorted R (sort R l) :=
|
||
@strongly_sorted_sort_aux _ _ _ _ to tr rf (length l) l rfl
|
||
|
||
lemma sort_eq_of_perm_core {l₁ l₂ : list A} (to : total R) (tr : transitive R) (rf : reflexive R) (asy : anti_symmetric R) (h : l₁ ~ l₂) : sort R l₁ = sort R l₂ :=
|
||
have s₁ : sorted R (sort R l₁), from sorted_of_strongly_sorted (strongly_sorted_sort_core to tr rf l₁),
|
||
have s₂ : sorted R (sort R l₂), from sorted_of_strongly_sorted (strongly_sorted_sort_core to tr rf l₂),
|
||
have p : sort R l₁ ~ sort R l₂, from calc
|
||
sort R l₁ ~ l₁ : sort_perm
|
||
... ~ l₂ : h
|
||
... ~ sort R l₂ : sort_perm,
|
||
eq_of_sorted_of_perm tr asy p s₁ s₂
|
||
|
||
section
|
||
omit decR
|
||
lemma strongly_sorted_sort [decidable_linear_order A] (l : list A) : strongly_sorted le (sort le l) :=
|
||
strongly_sorted_sort_core le.total (@le.trans A _) le.refl l
|
||
|
||
lemma sort_eq_of_perm {l₁ l₂ : list A} [decidable_linear_order A] (h : l₁ ~ l₂) : sort le l₁ = sort le l₂ :=
|
||
sort_eq_of_perm_core le.total (@le.trans A _) le.refl (@le.antisymm A _) h
|
||
end
|
||
end list
|