4dd6cead83
It was not a good idea to use heterogeneous equality as the default equality in Lean. It creates the following problems. - Heterogeneous equality does not propagate constraints in the elaborator. For example, suppose that l has type (List Int), then the expression l = nil will not propagate the type (List Int) to nil. - It is easy to write false. For example, suppose x has type Real, and the user writes x = 0. This is equivalent to false, since 0 has type Nat. The elaborator cannot introduce the coercion since x = 0 is a type correct expression. Homogeneous equality does not suffer from the problems above. We keep heterogeneous equality because it is useful for generating proof terms. Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
28 lines
1.1 KiB
Text
28 lines
1.1 KiB
Text
Set: pp::colors
|
|
Set: pp::unicode
|
|
Assumed: C
|
|
Assumed: D
|
|
Assumed: R
|
|
Proved: R2
|
|
Set: lean::pp::implicit
|
|
Variable C {A B : Type} (H : eq::explicit Type A B) (a : A) : B
|
|
Definition C::explicit (A B : Type) (H : A = B) (a : A) : B := C H a
|
|
Variable D {A A' : Type} {B : A → Type} {B' : A' → Type} (H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x)) :
|
|
eq::explicit Type A A'
|
|
Definition D::explicit (A A' : Type) (B : A → Type) (B' : A' → Type) (H : (Π x : A, B x) = (Π x : A', B' x)) : A =
|
|
A' :=
|
|
D H
|
|
Variable R {A A' : Type}
|
|
{B : A → Type}
|
|
{B' : A' → Type}
|
|
(H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x))
|
|
(a : A) :
|
|
eq::explicit Type (B a) (B' (C::explicit A A' (D::explicit A A' (λ x : A, B x) (λ x : A', B' x) H) a))
|
|
Definition R::explicit (A A' : Type)
|
|
(B : A → Type)
|
|
(B' : A' → Type)
|
|
(H : (Π x : A, B x) = (Π x : A', B' x))
|
|
(a : A) : (B a) = (B' (C (D H) a)) :=
|
|
R H a
|
|
Theorem R2 (A1 A2 B1 B2 : Type) (H : eq::explicit Type (A1 → B1) (A2 → B2)) (a : A1) : eq::explicit Type B1 B2 :=
|
|
R::explicit A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a
|