lean2/hott/homotopy/sphere.hlean
2016-03-03 10:13:20 -08:00

234 lines
7.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the n-spheres
-/
import .susp types.trunc
open eq nat susp bool is_trunc unit pointed
/-
We can define spheres with the following possible indices:
- trunc_index (defining S^-2 = S^-1 = empty)
- nat (forgetting that S^-1 = empty)
- nat, but counting wrong (S^0 = empty, S^1 = bool, ...)
- some new type "integers >= -1"
We choose the last option here.
-/
/- Sphere levels -/
inductive sphere_index : Type₀ :=
| minus_one : sphere_index
| succ : sphere_index → sphere_index
notation `ℕ₋₁` := sphere_index
namespace sphere_index
/-
notation for sphere_index is -1, 0, 1, ...
from 0 and up this comes from a coercion from num to sphere_index (via nat)
-/
postfix `.+1`:(max+1) := sphere_index.succ
postfix `.+2`:(max+1) := λ(n : sphere_index), (n .+1 .+1)
notation `-1` := minus_one
definition has_zero_sphere_index [instance] : has_zero ℕ₋₁ :=
has_zero.mk (succ minus_one)
definition has_one_sphere_index [instance] : has_one ℕ₋₁ :=
has_one.mk (succ (succ minus_one))
definition add_plus_one (n m : ℕ₋₁) : ℕ₋₁ :=
sphere_index.rec_on m n (λ k l, l .+1)
-- addition of sphere_indices, where (-1 + -1) is defined to be -1.
protected definition add (n m : ℕ₋₁) : ℕ₋₁ :=
sphere_index.cases_on m
(sphere_index.cases_on n -1 id)
(sphere_index.rec n (λn' r, succ r))
protected definition le (n m : ℕ₋₁) : Type₀ :=
sphere_index.rec_on n (λm, unit) (λ n p m, sphere_index.rec_on m (λ p, empty) (λ m q p, p m) p) m
infix `+1+`:65 := sphere_index.add_plus_one
definition has_add_sphere_index [instance] [priority 2000] [reducible] : has_add ℕ₋₁ :=
has_add.mk sphere_index.add
definition has_le_sphere_index [instance] : has_le ℕ₋₁ :=
has_le.mk sphere_index.le
definition succ_le_succ {n m : ℕ₋₁} (H : n ≤ m) : n.+1 ≤ m.+1 := proof H qed
definition le_of_succ_le_succ {n m : ℕ₋₁} (H : n.+1 ≤ m.+1) : n ≤ m := proof H qed
definition minus_two_le (n : ℕ₋₁) : -1 ≤ n := star
definition empty_of_succ_le_minus_two {n : ℕ₋₁} (H : n .+1 ≤ -1) : empty := H
definition of_nat [coercion] [reducible] (n : nat) : ℕ₋₁ :=
(nat.rec_on n -1 (λ n k, k.+1)).+1
definition sub_one [reducible] (n : ) : ℕ₋₁ :=
nat.rec_on n -1 (λ n k, k.+1)
postfix `.-1`:(max+1) := sub_one
definition succ_sub_one (n : ) : (nat.succ n).-1 = n :> ℕ₋₁ :=
idp
end sphere_index
open sphere_index
namespace trunc_index
definition sub_one [reducible] (n : ℕ₋₁) : ℕ₋₂ :=
sphere_index.rec_on n -2 (λ n k, k.+1)
postfix `.-1`:(max+1) := sub_one
definition of_sphere_index [coercion] [reducible] (n : ℕ₋₁) : ℕ₋₂ :=
n.-1.+1
definition sub_two_eq_sub_one_sub_one (n : ) : n.-2 = n.-1.-1 :=
nat.rec_on n idp (λn p, ap trunc_index.succ p)
definition succ_sub_one (n : ℕ₋₁) : n.+1.-1 = n :> ℕ₋₂ :=
idp
definition of_sphere_index_of_nat (n : )
: of_sphere_index (sphere_index.of_nat n) = trunc_index.of_nat n :> ℕ₋₂ :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
end trunc_index
open sphere_index equiv
definition sphere : ℕ₋₁ → Type₀
| -1 := empty
| n.+1 := susp (sphere n)
namespace sphere
definition base {n : } : sphere n := north
definition pointed_sphere [instance] [constructor] (n : ) : pointed (sphere n) :=
pointed.mk base
definition psphere [constructor] (n : ) : Type* := pointed.mk' (sphere n)
namespace ops
abbreviation S := sphere
notation `S.` := psphere
end ops
open sphere.ops
definition sphere_minus_one : S -1 = empty := idp
definition sphere_succ (n : ℕ₋₁) : S n.+1 = susp (S n) := idp
definition equator (n : ) : map₊ (S. n) (Ω (S. (succ n))) :=
pmap.mk (λa, merid a ⬝ (merid base)⁻¹) !con.right_inv
definition surf {n : } : Ω[n] S. n :=
nat.rec_on n (proof base qed)
(begin intro m s, refine cast _ (apn m (equator m) s),
exact ap carrier !loop_space_succ_eq_in⁻¹ end)
definition bool_of_sphere : S 0 → bool :=
proof susp.rec ff tt (λx, empty.elim x) qed
definition sphere_of_bool : bool → S 0
| ff := proof north qed
| tt := proof south qed
definition sphere_equiv_bool : S 0 ≃ bool :=
equiv.MK bool_of_sphere
sphere_of_bool
(λb, match b with | tt := idp | ff := idp end)
(λx, proof susp.rec_on x idp idp (empty.rec _) qed)
definition sphere_eq_bool : S 0 = bool :=
ua sphere_equiv_bool
definition sphere_eq_pbool : S. 0 = pbool :=
pType_eq sphere_equiv_bool idp
-- TODO1: the commented-out part makes the forward function below "apn _ surf"
-- TODO2: we could make this a pointed equivalence
definition pmap_sphere (A : Type*) (n : ) : map₊ (S. n) A ≃ Ω[n] A :=
begin
-- fapply equiv_change_fun,
-- {
revert A, induction n with n IH: intro A,
{ apply tr_rev (λx, x →* _ ≃ _) sphere_eq_pbool, apply pmap_bool_equiv},
{ refine susp_adjoint_loop (S. n) A ⬝e !IH ⬝e _, rewrite [loop_space_succ_eq_in]}
-- },
-- { intro f, exact apn n f surf},
-- { revert A, induction n with n IH: intro A f,
-- { exact sorry},
-- { exact sorry}}
end
protected definition elim {n : } {P : Type*} (p : Ω[n] P) : map₊ (S. n) P :=
to_inv !pmap_sphere p
-- definition elim_surf {n : } {P : Type*} (p : Ω[n] P) : apn n (sphere.elim p) surf = p :=
-- begin
-- induction n with n IH,
-- { esimp [apn,surf,sphere.elim,pmap_sphere], apply sorry},
-- { apply sorry}
-- end
end sphere
open sphere sphere.ops
namespace is_trunc
open trunc_index
variables {n : } {A : Type}
definition is_trunc_of_pmap_sphere_constant
(H : Π(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
begin
apply iff.elim_right !is_trunc_iff_is_contr_loop,
intro a,
apply is_trunc_equiv_closed, apply pmap_sphere,
fapply is_contr.mk,
{ exact pmap.mk (λx, a) idp},
{ intro f, fapply pmap_eq,
{ intro x, esimp, refine !respect_pt⁻¹ ⬝ (!H ⬝ !H⁻¹)},
{ rewrite [▸*,con.right_inv,▸*,con.left_inv]}}
end
definition is_trunc_iff_map_sphere_constant
(H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
begin
apply is_trunc_of_pmap_sphere_constant,
intros, cases f with f p, esimp at *, apply H
end
definition pmap_sphere_constant_of_is_trunc' [H : is_trunc (n.-2.+1) A]
(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n) : f x = f base :=
begin
let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a,
note H'' := @is_trunc_equiv_closed_rev _ _ _ !pmap_sphere H',
have p : (f = pmap.mk (λx, f base) (respect_pt f)),
by apply is_prop.elim,
exact ap10 (ap pmap.to_fun p) x
end
definition pmap_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x y : S n) : f x = f y :=
let H := pmap_sphere_constant_of_is_trunc' a f in !H ⬝ !H⁻¹
definition map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
(f : S n → A) (x y : S n) : f x = f y :=
pmap_sphere_constant_of_is_trunc (f base) (pmap.mk f idp) x y
definition map_sphere_constant_of_is_trunc_self [H : is_trunc (n.-2.+1) A]
(f : S n → A) (x : S n) : map_sphere_constant_of_is_trunc f x x = idp :=
!con.right_inv
end is_trunc