lean2/src/library/unifier.cpp

2601 lines
101 KiB
C++

/*
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <utility>
#include <memory>
#include <vector>
#include <limits>
#include <algorithm>
#include "util/interrupt.h"
#include "util/luaref.h"
#include "util/lazy_list_fn.h"
#include "util/sstream.h"
#include "util/lbool.h"
#include "util/flet.h"
#include "util/sexpr/option_declarations.h"
#include "kernel/for_each_fn.h"
#include "kernel/abstract.h"
#include "kernel/instantiate.h"
#include "kernel/type_checker.h"
#include "kernel/kernel_exception.h"
#include "kernel/error_msgs.h"
#include "library/normalize.h"
#include "library/occurs.h"
#include "library/locals.h"
#include "library/module.h"
#include "library/unifier.h"
#include "library/reducible.h"
#include "library/unifier_plugin.h"
#include "library/kernel_bindings.h"
#include "library/print.h"
#include "library/expr_lt.h"
#ifndef LEAN_DEFAULT_UNIFIER_MAX_STEPS
#define LEAN_DEFAULT_UNIFIER_MAX_STEPS 20000
#endif
#ifndef LEAN_DEFAULT_UNIFIER_COMPUTATION
#define LEAN_DEFAULT_UNIFIER_COMPUTATION false
#endif
#ifndef LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES
#define LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES false
#endif
#ifndef LEAN_DEFAULT_UNIFIER_CONSERVATIVE
#define LEAN_DEFAULT_UNIFIER_CONSERVATIVE false
#endif
#ifndef LEAN_DEFAULT_UNIFIER_NONCHRONOLOGICAL
#define LEAN_DEFAULT_UNIFIER_NONCHRONOLOGICAL true
#endif
namespace lean {
static name * g_unifier_max_steps = nullptr;
static name * g_unifier_computation = nullptr;
static name * g_unifier_expensive_classes = nullptr;
static name * g_unifier_conservative = nullptr;
static name * g_unifier_nonchronological = nullptr;
unsigned get_unifier_max_steps(options const & opts) {
return opts.get_unsigned(*g_unifier_max_steps, LEAN_DEFAULT_UNIFIER_MAX_STEPS);
}
bool get_unifier_computation(options const & opts) {
return opts.get_bool(*g_unifier_computation, LEAN_DEFAULT_UNIFIER_COMPUTATION);
}
bool get_unifier_expensive_classes(options const & opts) {
return opts.get_bool(*g_unifier_expensive_classes, LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES);
}
bool get_unifier_conservative(options const & opts) {
return opts.get_bool(*g_unifier_conservative, LEAN_DEFAULT_UNIFIER_CONSERVATIVE);
}
bool get_unifier_nonchronological(options const & opts) {
return opts.get_bool(*g_unifier_nonchronological, LEAN_DEFAULT_UNIFIER_NONCHRONOLOGICAL);
}
unifier_config::unifier_config(bool use_exceptions, bool discard):
m_use_exceptions(use_exceptions),
m_max_steps(LEAN_DEFAULT_UNIFIER_MAX_STEPS),
m_computation(LEAN_DEFAULT_UNIFIER_COMPUTATION),
m_expensive_classes(LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES),
m_discard(discard),
m_nonchronological(LEAN_DEFAULT_UNIFIER_NONCHRONOLOGICAL) {
m_kind = unifier_kind::Liberal;
m_pattern = false;
m_ignore_context_check = false;
}
unifier_config::unifier_config(options const & o, bool use_exceptions, bool discard):
m_use_exceptions(use_exceptions),
m_max_steps(get_unifier_max_steps(o)),
m_computation(get_unifier_computation(o)),
m_expensive_classes(get_unifier_expensive_classes(o)),
m_discard(discard),
m_nonchronological(get_unifier_nonchronological(o)) {
if (get_unifier_conservative(o))
m_kind = unifier_kind::Conservative;
else
m_kind = unifier_kind::Liberal;
m_pattern = false;
m_ignore_context_check = false;
}
// If \c e is a metavariable ?m or a term of the form (?m l_1 ... l_n) where
// l_1 ... l_n are distinct local variables, then return ?m, and store l_1 ... l_n in args.
// Otherwise return none.
optional<expr> is_simple_meta(expr const & e, buffer<expr> & args) {
expr const & m = get_app_args(e, args);
if (!is_metavar(m))
return none_expr();
for (auto it = args.begin(); it != args.end(); it++) {
if (!is_local(*it) || contains_local(*it, args.begin(), it))
return none_expr();
}
return some_expr(m);
}
bool is_simple_meta(expr const & e) {
buffer<expr> args;
return (bool)is_simple_meta(e, args); // NOLINT
}
// Return true if all local constants in \c e are in locals
bool context_check(expr const & e, buffer<expr> const & locals) {
bool failed = false;
for_each(e, [&](expr const & e, unsigned) {
if (failed)
return false;
if (is_local(e)) {
if (!contains_local(e, locals))
failed = true;
return false; // do not visit type
}
if (is_metavar(e))
return false; // do not visit type
return has_local(e);
});
return !failed;
}
enum class occurs_check_status { Ok, Maybe, FailCircular, FailLocal };
// Return
// - l_undef if \c e contains a metavariable application that contains
// a local constant not in locals
// - l_true if \c e does not contain the metavariable \c m, and all local
// constants are in \c e are in \c locals.
// - l_false if \c e contains \c m or it contains a local constant \c l
// not in locals that is not in a metavariable application.
occurs_check_status occurs_context_check(substitution & s, expr const & e, expr const & m, buffer<expr> const & locals, expr & bad_local) {
expr root = e;
occurs_check_status r = occurs_check_status::Ok;
for_each(e, [&](expr const & e, unsigned) {
if (r == occurs_check_status::FailLocal || r == occurs_check_status::FailCircular) {
return false;
} else if (is_local(e)) {
if (!contains_local(e, locals)) {
// right-hand-side contains variable that is not in the scope
// of metavariable.
bad_local = e;
r = occurs_check_status::FailLocal;
}
return false; // do not visit type
} else if (is_meta(e)) {
if (r == occurs_check_status::Ok) {
if (!context_check(e, locals))
r = occurs_check_status::Maybe;
if (s.occurs(m, e))
r = occurs_check_status::Maybe;
}
if (mlocal_name(get_app_fn(e)) == mlocal_name(m))
r = occurs_check_status::FailCircular;
return false; // do not visit children
} else {
// we only need to continue exploring e if it contains
// metavariables and/or local constants.
return has_expr_metavar(e) || has_local(e);
}
});
if (r != occurs_check_status::Ok)
return r;
for (expr const & local : locals) {
if (s.occurs(m, mlocal_type(local)))
return occurs_check_status::Maybe;
}
return r;
}
occurs_check_status occurs_context_check(substitution & s, expr const & e, expr const & m, buffer<expr> const & locals) {
expr bad_local;
return occurs_context_check(s, e, m, locals, bad_local);
}
unify_status unify_simple_core(substitution & s, expr const & lhs, expr const & rhs, justification const & j) {
lean_assert(is_meta(lhs));
buffer<expr> args;
auto m = is_simple_meta(lhs, args);
if (!m || is_meta(rhs)) {
return unify_status::Unsupported;
} else {
switch (occurs_context_check(s, rhs, *m, args)) {
case occurs_check_status::FailLocal:
case occurs_check_status::FailCircular:
return unify_status::Failed;
case occurs_check_status::Maybe:
return unify_status::Unsupported;
case occurs_check_status::Ok: {
s.assign(*m, args, rhs, j);
return unify_status::Solved;
}}
}
lean_unreachable(); // LCOV_EXCL_LINE
}
unify_status unify_simple(substitution & s, expr const & lhs, expr const & rhs, justification const & j) {
if (lhs == rhs)
return unify_status::Solved;
else if (!has_metavar(lhs) && !has_metavar(rhs))
return unify_status::Failed;
else if (is_meta(lhs))
return unify_simple_core(s, lhs, rhs, j);
else if (is_meta(rhs))
return unify_simple_core(s, rhs, lhs, j);
else
return unify_status::Unsupported;
}
// Return true if m occurs in e
bool occurs_meta(level const & m, level const & e) {
lean_assert(is_meta(m));
bool contains = false;
for_each(e, [&](level const & l) {
if (contains)
return false;
if (l == m) {
contains = true;
return false;
}
return has_meta(l);
});
return contains;
}
unify_status unify_simple_core(substitution & s, level const & lhs, level const & rhs, justification const & j) {
lean_assert(is_meta(lhs));
bool contains = occurs_meta(lhs, rhs);
if (contains) {
if (is_succ(rhs))
return unify_status::Failed;
else
return unify_status::Unsupported;
}
s.assign(meta_id(lhs), rhs, j);
return unify_status::Solved;
}
unify_status unify_simple(substitution & s, level const & lhs, level const & rhs, justification const & j) {
if (lhs == rhs)
return unify_status::Solved;
else if (!has_meta(lhs) && !has_meta(rhs))
return unify_status::Failed;
else if (is_meta(lhs))
return unify_simple_core(s, lhs, rhs, j);
else if (is_meta(rhs))
return unify_simple_core(s, rhs, lhs, j);
else if (is_succ(lhs) && is_succ(rhs))
return unify_simple(s, succ_of(lhs), succ_of(rhs), j);
else
return unify_status::Unsupported;
}
unify_status unify_simple(substitution & s, constraint const & c) {
if (is_eq_cnstr(c))
return unify_simple(s, cnstr_lhs_expr(c), cnstr_rhs_expr(c), c.get_justification());
else if (is_level_eq_cnstr(c))
return unify_simple(s, cnstr_lhs_level(c), cnstr_rhs_level(c), c.get_justification());
else
return unify_status::Unsupported;
}
static constraint * g_dont_care_cnstr = nullptr;
static unsigned g_group_size = 1u << 28;
constexpr unsigned g_num_groups = 8;
static unsigned g_cnstr_group_first_index[g_num_groups] = { 0, g_group_size, 2*g_group_size, 3*g_group_size, 4*g_group_size, 5*g_group_size, 6*g_group_size, 7*g_group_size};
static unsigned get_group_first_index(cnstr_group g) {
return g_cnstr_group_first_index[static_cast<unsigned>(g)];
}
static cnstr_group to_cnstr_group(unsigned d) {
if (d >= g_num_groups)
d = g_num_groups-1;
return static_cast<cnstr_group>(d);
}
/** \brief Convert choice constraint delay factor to cnstr_group */
cnstr_group get_choice_cnstr_group(constraint const & c) {
lean_assert(is_choice_cnstr(c));
unsigned f = cnstr_delay_factor(c);
if (f > static_cast<unsigned>(cnstr_group::MaxDelayed)) {
return cnstr_group::MaxDelayed;
} else {
return static_cast<cnstr_group>(f);
}
}
/** \brief Auxiliary functional object for implementing simultaneous higher-order unification */
struct unifier_fn {
typedef pair<constraint, unsigned> cnstr; // constraint + idx
struct cnstr_cmp {
int operator()(cnstr const & c1, cnstr const & c2) const {
return c1.second < c2.second ? -1 : (c1.second == c2.second ? 0 : 1);
}
};
typedef rb_tree<cnstr, cnstr_cmp> cnstr_set;
typedef rb_tree<unsigned, unsigned_cmp> cnstr_idx_set;
typedef name_map<cnstr_idx_set> name_to_cnstrs;
typedef name_map<unsigned> owned_map;
typedef rb_map<expr, pair<expr, justification>, expr_quick_cmp> expr_map;
typedef std::shared_ptr<type_checker> type_checker_ptr;
environment m_env;
name_generator m_ngen;
substitution m_subst;
constraints m_postponed; // constraints that will not be solved
owned_map m_owned_map; // mapping from metavariable name m to delay factor of the choice constraint that owns m
expr_map m_type_map; // auxiliary map for storing the type of the expr in choice constraints
unifier_plugin m_plugin;
type_checker_ptr m_tc;
type_checker_ptr m_flex_rigid_tc; // type checker used when solving flex rigid constraints. By default,
// only the definitions from the main module are treated as transparent.
unifier_config m_config;
unsigned m_num_steps;
bool m_first; //!< True if we still have to generate the first solution.
unsigned m_next_assumption_idx; //!< Next assumption index.
unsigned m_next_cidx; //!< Next constraint index.
/**
\brief "Queue" of constraints to be solved.
We implement it using a red-black-tree because:
1- Our red-black-trees support a O(1) copy operation. So, it is cheap to create a snapshot
whenever we create a backtracking point.
2- We can easily remove any constraint from the queue in O(n log n). We do that when
a metavariable \c m is assigned, and we want to instantiate it in all constraints that
contains it.
*/
cnstr_set m_cnstrs;
/**
\brief The following map is an index. The map a metavariable name \c m to the set of constraint indices that contain \c m.
We use these indices whenever a metavariable \c m is assigned.
When the metavariable is assigned, we used this index to remove constraints that contains \c m from \c m_cnstrs,
instantiate \c m, and reprocess them.
\remark \c m_mvar_occs is for regular metavariables.
*/
name_to_cnstrs m_mvar_occs;
/**
\brief Base class for the case-splits created by the unifier.
We have three different kinds of case splits:
1- unifier plugin
2- choice constraints
3- higher-order unification
*/
struct case_split {
unsigned m_assumption_idx; // idx of the current assumption
justification m_jst;
justification m_failed_justifications; // justifications for failed branches
// snapshot of unifier's state
substitution m_subst;
constraints m_postponed;
cnstr_set m_cnstrs;
expr_map m_type_map;
name_to_cnstrs m_mvar_occs;
owned_map m_owned_map;
/** \brief Save unifier's state */
case_split(unifier_fn & u, justification const & j):
m_assumption_idx(u.m_next_assumption_idx), m_jst(j), m_subst(u.m_subst),
m_postponed(u.m_postponed), m_cnstrs(u.m_cnstrs), m_type_map(u.m_type_map),
m_mvar_occs(u.m_mvar_occs), m_owned_map(u.m_owned_map) {
u.m_next_assumption_idx++;
}
/** \brief Restore unifier's state with saved values, and update m_assumption_idx and m_failed_justifications. */
void restore_state(unifier_fn & u) {
lean_assert(u.in_conflict());
u.m_subst = m_subst;
u.m_postponed = m_postponed;
u.m_cnstrs = m_cnstrs;
u.m_mvar_occs = m_mvar_occs;
u.m_owned_map = m_owned_map;
u.m_type_map = m_type_map;
m_assumption_idx = u.m_next_assumption_idx;
m_failed_justifications = mk_composite1(m_failed_justifications, *u.m_conflict);
u.m_next_assumption_idx++;
u.m_conflict = optional<justification>();
}
justification get_jst() const { return m_jst; }
virtual ~case_split() {}
virtual bool next(unifier_fn & u) = 0;
};
typedef std::vector<std::unique_ptr<case_split>> case_split_stack;
struct lazy_constraints_case_split : public case_split {
lazy_list<constraints> m_tail;
lazy_constraints_case_split(unifier_fn & u, justification const & j, lazy_list<constraints> const & tail):
case_split(u, j), m_tail(tail) {}
virtual bool next(unifier_fn & u) { return u.next_lazy_constraints_case_split(*this); }
};
struct simple_case_split : public case_split {
list<constraints> m_tail;
simple_case_split(unifier_fn & u, justification const & j, list<constraints> const & tail):case_split(u, j), m_tail(tail) {}
virtual bool next(unifier_fn & u) { return u.next_simple_case_split(*this); }
};
struct delta_unfold_case_split : public case_split {
bool m_done;
constraint m_cnstr;
delta_unfold_case_split(unifier_fn & u, justification const & j, constraint const & c):
case_split(u, j), m_done(false), m_cnstr(c) {}
virtual bool next(unifier_fn & u) { return u.next_delta_unfold_case_split(*this); }
};
case_split_stack m_case_splits;
optional<justification> m_conflict; //!< if different from none, then there is a conflict.
unifier_fn(environment const & env, unsigned num_cs, constraint const * cs,
name_generator && ngen, substitution const & s,
unifier_config const & cfg):
m_env(env), m_ngen(ngen), m_subst(s), m_plugin(get_unifier_plugin(env)),
m_config(cfg), m_num_steps(0) {
switch (m_config.m_kind) {
case unifier_kind::Cheap:
m_tc = mk_opaque_type_checker(env, m_ngen.mk_child());
m_flex_rigid_tc = m_tc;
m_config.m_computation = false;
break;
case unifier_kind::VeryConservative:
m_tc = mk_type_checker(env, m_ngen.mk_child(), UnfoldReducible);
m_flex_rigid_tc = m_tc;
m_config.m_computation = false;
break;
case unifier_kind::Conservative:
m_tc = mk_type_checker(env, m_ngen.mk_child(), UnfoldQuasireducible);
m_flex_rigid_tc = m_tc;
m_config.m_computation = false;
break;
case unifier_kind::Liberal:
m_tc = mk_type_checker(env, m_ngen.mk_child());
if (!cfg.m_computation)
m_flex_rigid_tc = mk_type_checker(env, m_ngen.mk_child(), UnfoldQuasireducible);
break;
default:
lean_unreachable();
}
m_next_assumption_idx = 0;
m_next_cidx = 0;
m_first = true;
process_input_constraints(num_cs, cs);
}
void process_input_constraints(unsigned num_cs, constraint const * cs) {
// Input choice constraints may have ownership over a metavariable.
// So, we must first process them, to make sure the ownership table is initialized before
// we solve the remaining constraints
for (unsigned i = 0; i < num_cs; i++) {
if (cs[i].kind() == constraint_kind::Choice)
preprocess_choice_constraint(cs[i]);
}
for (unsigned i = 0; i < num_cs; i++) {
if (cs[i].kind() != constraint_kind::Choice)
process_constraint(cs[i]);
}
}
void check_system() {
::lean::check_system("unifier");
}
void check_full() {
check_system();
if (m_num_steps > m_config.m_max_steps)
throw exception(sstream() << "unifier maximum number of steps (" << m_config.m_max_steps << ") exceeded, " <<
"the maximum number of steps can be increased by setting the option unifier.max_steps " <<
"(remark: the unifier uses higher order unification and unification-hints, " <<
"which may trigger non-termination");
m_num_steps++;
}
bool in_conflict() const { return (bool)m_conflict; } // NOLINT
void set_conflict(justification const & j) { m_conflict = j; }
void update_conflict(justification const & j) { m_conflict = j; }
void reset_conflict() { m_conflict = optional<justification>(); lean_assert(!in_conflict()); }
expr mk_local_for(expr const & b) {
return mk_local(m_ngen.next(), binding_name(b), binding_domain(b), binding_info(b));
}
/**
\brief Update occurrence index with entry <tt>m -> cidx</tt>, where \c m is the name of a metavariable,
and \c cidx is the index of a constraint that contains \c m.
*/
void add_mvar_occ(name const & m, unsigned cidx) {
cnstr_idx_set s;
auto it = m_mvar_occs.find(m);
if (it)
s = *it;
if (!s.contains(cidx)) {
s.insert(cidx);
m_mvar_occs.insert(m, s);
}
}
void add_meta_occ(expr const & m, unsigned cidx) {
lean_assert(is_meta(m));
add_mvar_occ(mlocal_name(get_app_fn(m)), cidx);
}
/** \brief For each metavariable m in e add an entry m -> cidx at m_mvar_occs.
Return true if at least one entry was added.
*/
bool add_meta_occs(expr const & e, unsigned cidx) {
bool added = false;
if (has_expr_metavar(e)) {
for_each(e, [&](expr const & e, unsigned) {
if (is_meta(e)) {
add_meta_occ(e, cidx);
added = true;
return false;
}
if (is_local(e))
return false;
return has_expr_metavar(e);
});
}
return added;
}
/** \brief Add constraint to the constraint queue */
unsigned add_cnstr(constraint const & c, cnstr_group g) {
unsigned cidx = m_next_cidx + get_group_first_index(g);
m_cnstrs.insert(cnstr(c, cidx));
m_next_cidx++;
return cidx;
}
/** \brief Check if \c t1 and \c t2 are definitionally equal, if they are not, set a conflict with justification \c j
*/
bool is_def_eq(expr const & t1, expr const & t2, justification const & j) {
try {
auto dcs = m_tc->is_def_eq(t1, t2, j);
if (!dcs.first) {
// std::cout << "conflict: " << t1 << " =?= " << t2 << "\n";
set_conflict(j);
return false;
} else {
return process_constraints(dcs.second);
}
} catch (exception&) {
set_conflict(j);
return false;
}
}
/** \brief Process the given constraints. Return true iff no conflict was detected. */
bool process_constraints(constraint_seq const & cs) {
return cs.all_of([&](constraint const & c) { return process_constraint(c); });
}
bool process_constraints(buffer<constraint> const & cs) {
for (auto const & c : cs) {
if (!process_constraint(c))
return false;
}
return true;
}
/** \brief Process constraints in \c cs, and append justification \c j to them. */
bool process_constraints(constraint_seq const & cs, justification const & j) {
return cs.all_of([&](constraint const & c) {
return process_constraint(update_justification(c, mk_composite1(c.get_justification(), j)));
});
}
template<typename Constraints>
bool process_constraints(Constraints const & cs, justification const & j) {
for (auto const & c : cs) {
if (!process_constraint(update_justification(c, mk_composite1(c.get_justification(), j))))
return false;
}
return true;
}
/** \brief Put \c e in weak head normal form.
\remark Constraints generated in the process are stored in \c cs.
*/
expr whnf(expr const & e, constraint_seq & cs) {
return m_tc->whnf(e, cs);
}
/** \brief Infer \c e type.
\remark Return none if an exception was throw when inferring the type.
\remark Constraints generated in the process are stored in \c cs.
*/
optional<expr> infer(expr const & e, constraint_seq & cs) {
try {
return some_expr(m_tc->infer(e, cs));
} catch (exception &) {
return none_expr();
}
}
expr whnf(expr const & e, justification const & j, buffer<constraint> & cs) {
constraint_seq _cs;
expr r = whnf(e, _cs);
to_buffer(_cs, j, cs);
return r;
}
expr flex_rigid_whnf(expr const & e, justification const & j, buffer<constraint> & cs) {
if (m_config.m_computation) {
return whnf(e, j, cs);
} else {
constraint_seq _cs;
expr r = m_flex_rigid_tc->whnf(e, _cs);
to_buffer(_cs, j, cs);
return r;
}
}
justification mk_assign_justification(expr const & m, expr const & m_type, expr const & v_type, justification const & j) {
auto r = j.get_main_expr();
if (!r) r = m;
justification new_j = mk_justification(r, [=](formatter const & fmt, substitution const & subst) {
substitution s(subst);
format r;
expr _m = s.instantiate(m);
if (is_meta(_m)) {
r = format("type error in placeholder assignment");
} else {
r = format("type error in placeholder assigned to");
r += pp_indent_expr(fmt, _m);
}
format expected_fmt, given_fmt;
std::tie(expected_fmt, given_fmt) = pp_until_different(fmt, m_type, v_type);
r += compose(line(), format("placeholder has type"));
r += given_fmt;
r += compose(line(), format("but is expected to have type"));
r += expected_fmt;
r += compose(line(), format("the assignment was attempted when trying to solve"));
r += nest(2*get_pp_indent(fmt.get_options()), compose(line(), j.pp(fmt, nullptr, subst)));
return r;
});
return mk_composite1(new_j, j);
}
/**
\brief Given lhs of the form (m args), assign (m args) := rhs with justification j.
The type of lhs and rhs are inferred, and is_def_eq is invoked.
Any other constraint that contains \c m is revisited
*/
bool assign(expr const & lhs, expr const & m, buffer<expr> const & args, expr const & rhs, justification const & j) {
lean_assert(is_metavar(m));
lean_assert(!in_conflict());
m_subst.assign(m, args, rhs, j);
constraint_seq cs;
auto lhs_type = infer(lhs, cs);
auto rhs_type = infer(rhs, cs);
if (lhs_type && rhs_type) {
if (!process_constraints(cs, j))
return false;
justification new_j = mk_assign_justification(m, *lhs_type, *rhs_type, j);
if (!is_def_eq(*lhs_type, *rhs_type, new_j))
return false;
} else {
set_conflict(j);
return false;
}
auto it = m_mvar_occs.find(mlocal_name(m));
if (it) {
cnstr_idx_set s = *it;
m_mvar_occs.erase(mlocal_name(m));
s.for_each([&](unsigned cidx) {
process_constraint_cidx(cidx);
});
return !in_conflict();
} else {
return true;
}
}
/**
\brief Assign \c v to universe metavariable \c m with justification \c j.
Any constraint that contains \c m is revisted.
*/
bool assign(level const & m, level const & v, justification const & j) {
lean_assert(is_meta(m));
m_subst.assign(m, v, j);
return true;
}
justification mk_invalid_local_ctx_justification(expr const & lhs, expr const & rhs, justification const & j,
expr const & bad_local) {
justification new_j = mk_justification(get_app_fn(lhs), [=](formatter const & fmt, substitution const & subst) {
format r = format("invalid local context when tried to assign");
r += pp_indent_expr(fmt, rhs);
buffer<expr> locals;
auto m = get_app_args(lhs, locals);
r += line() + format("containing '") + fmt(bad_local) + format("', to placeholder '") + fmt(m) + format("'");
if (locals.empty()) {
r += format(", in the empty local context");
} else {
r += format(", in the local context");
format aux;
bool first = true;
for (expr const l : locals) {
if (first) first = false; else aux += space();
aux += fmt(l);
}
r += nest(get_pp_indent(fmt.get_options()), compose(line(), aux));
}
r += compose(line(), format("the assignment was attempted when trying to solve"));
r += nest(2*get_pp_indent(fmt.get_options()), compose(line(), j.pp(fmt, nullptr, subst)));
return r;
});
return mk_composite1(new_j, j);
}
enum status { Solved, Failed, Continue };
/**
\brief Process constraints of the form <tt>lhs =?= rhs</tt> where lhs is of the form <tt>?m</tt> or <tt>(?m l_1 .... l_n)</tt>,
where all \c l_i are distinct local variables. In this case, the method returns Solved, if the method assign succeeds.
The method returns \c Failed if \c rhs contains <tt>?m</tt>, or it contains a local constant not in <tt>{l_1, ..., l_n}</tt>.
Otherwise, it returns \c Continue.
*/
status process_metavar_eq(expr const & lhs, expr const & rhs, justification const & j) {
if (!is_meta(lhs))
return Continue;
buffer<expr> locals;
auto m = is_simple_meta(lhs, locals);
if (!m || is_meta(rhs))
return Continue;
expr bad_local;
occurs_check_status status;
if (m_config.m_ignore_context_check)
status = occurs_check_status::Ok;
else
status = occurs_context_check(m_subst, rhs, *m, locals, bad_local);
if (status == occurs_check_status::FailLocal || status == occurs_check_status::FailCircular) {
// Try to normalize rhs
// Example: ?M := f (pr1 (pair 0 ?M))
constraint_seq cs;
auto is_target_fn = [&](expr const & e) {
if (status == occurs_check_status::FailLocal && occurs(bad_local, e))
return true;
else if (status == occurs_check_status::FailCircular && occurs(*m, e))
return true;
return false;
};
expr rhs_n = normalize(*m_tc, rhs, is_target_fn, cs);
if (rhs != rhs_n && process_constraints(cs))
return process_metavar_eq(lhs, rhs_n, j);
}
switch (status) {
case occurs_check_status::FailLocal:
set_conflict(mk_invalid_local_ctx_justification(lhs, rhs, j, bad_local));
return Failed;
case occurs_check_status::FailCircular:
set_conflict(j);
return Failed;
case occurs_check_status::Maybe:
return Continue;
case occurs_check_status::Ok:
lean_assert(!m_subst.is_assigned(*m));
if (assign(lhs, *m, locals, rhs, j)) {
return Solved;
} else {
return Failed;
}
}
lean_unreachable(); // LCOV_EXCL_LINE
}
optional<declaration> is_delta(expr const & e) {
return m_tc->is_delta(e);
}
/** \brief Return true if lhs and rhs are of the form (f ...) where f can be expanded */
bool is_eq_deltas(expr const & lhs, expr const & rhs) {
auto lhs_d = is_delta(lhs);
auto rhs_d = is_delta(rhs);
return lhs_d && rhs_d && is_eqp(*lhs_d, *rhs_d);
}
/** \brief Return true if the constraint is of the form (f ...) =?= (f ...), where f can be expanded. */
bool is_delta_cnstr(constraint const & c) {
return is_eq_cnstr(c) && is_eq_deltas(cnstr_lhs_expr(c), cnstr_rhs_expr(c));
}
pair<constraint, bool> instantiate_metavars(constraint const & c) {
if (is_eq_cnstr(c)) {
auto lhs_jst = m_subst.instantiate_metavars(cnstr_lhs_expr(c));
auto rhs_jst = m_subst.instantiate_metavars(cnstr_rhs_expr(c));
expr lhs = lhs_jst.first;
expr rhs = rhs_jst.first;
if (lhs != cnstr_lhs_expr(c) || rhs != cnstr_rhs_expr(c)) {
return mk_pair(mk_eq_cnstr(lhs, rhs,
mk_composite1(mk_composite1(c.get_justification(), lhs_jst.second), rhs_jst.second)),
true);
}
} else if (is_level_eq_cnstr(c)) {
auto lhs_jst = m_subst.instantiate_metavars(cnstr_lhs_level(c));
auto rhs_jst = m_subst.instantiate_metavars(cnstr_rhs_level(c));
level lhs = lhs_jst.first;
level rhs = rhs_jst.first;
if (lhs != cnstr_lhs_level(c) || rhs != cnstr_rhs_level(c)) {
return mk_pair(mk_level_eq_cnstr(lhs, rhs,
mk_composite1(mk_composite1(c.get_justification(), lhs_jst.second), rhs_jst.second)),
true);
}
}
return mk_pair(c, false);
}
status process_eq_constraint_core(constraint const & c) {
expr const & lhs = cnstr_lhs_expr(c);
expr const & rhs = cnstr_rhs_expr(c);
justification const & jst = c.get_justification();
if (lhs == rhs)
return Solved; // trivial constraint
// Update justification using the justification of the instantiated metavariables
if (!has_metavar(lhs) && !has_metavar(rhs)) {
return is_def_eq(lhs, rhs, jst) ? Solved : Failed;
}
// Handle higher-order pattern matching.
status st = process_metavar_eq(lhs, rhs, jst);
if (st != Continue) return st;
st = process_metavar_eq(rhs, lhs, jst);
if (st != Continue) return st;
return Continue;
}
expr instantiate_meta(expr e, justification & j) {
while (true) {
if (auto p = m_subst.expand_metavar_app(e)) {
// The following check_system is defensive programming.
// If the unifier is correct, and no loops are introduced in the substituion,
// then this loop should always terminate.
// Anyway, we may have bugs, and we should interrupt the loop if all resources are being consumed.
check_system();
e = p->first;
j = mk_composite1(j, p->second);
} else {
return e;
}
}
}
expr instantiate_meta_args(expr const & e, justification & j) {
if (!is_app(e))
return e;
buffer<expr> args;
bool modified = false;
expr const & f = get_app_rev_args(e, args);
unsigned i = args.size();
while (i > 0) {
--i;
expr new_arg = instantiate_meta(args[i], j);
if (new_arg != args[i]) {
modified = true;
args[i] = new_arg;
}
}
if (!modified)
return e;
return mk_rev_app(f, args.size(), args.data());
}
status instantiate_eq_cnstr(constraint const & c) {
justification j = c.get_justification();
expr lhs = instantiate_meta(cnstr_lhs_expr(c), j);
expr rhs = instantiate_meta(cnstr_rhs_expr(c), j);
if (lhs != cnstr_lhs_expr(c) || rhs != cnstr_rhs_expr(c))
return is_def_eq(lhs, rhs, j) ? Solved : Failed;
lhs = instantiate_meta_args(lhs, j);
rhs = instantiate_meta_args(rhs, j);
if (lhs != cnstr_lhs_expr(c) || rhs != cnstr_rhs_expr(c))
return is_def_eq(lhs, rhs, j) ? Solved : Failed;
return Continue;
}
/** \brief Return a delay factor if e is of the form (?m ...) and ?m is a metavariable owned by
a choice constraint. The delay factor is the delay of the choice constraint.
Return none otherwise. */
optional<unsigned> is_owned(expr const & e) {
expr const & m = get_app_fn(e);
if (!is_metavar(m))
return optional<unsigned>();
if (auto it = m_owned_map.find(mlocal_name(m)))
return optional<unsigned>(*it);
else
return optional<unsigned>();
}
/** \brief Applies previous method to the left and right hand sides of the equality constraint */
optional<unsigned> is_owned(constraint const & c) {
if (auto d = is_owned(cnstr_lhs_expr(c)))
return d;
else
return is_owned(cnstr_rhs_expr(c));
}
/** \brief Process an equality constraints. */
bool process_eq_constraint(constraint const & c) {
lean_assert(is_eq_cnstr(c));
// instantiate assigned metavariables
status st = instantiate_eq_cnstr(c);
if (st != Continue) return st == Solved;
if (auto d = is_owned(c)) {
// Metavariable in the constraint is owned by choice constraint.
// So, we postpone this constraint.
add_cnstr(c, to_cnstr_group(*d+1));
return true;
}
st = process_eq_constraint_core(c);
if (st != Continue) return st == Solved;
expr const & lhs = cnstr_lhs_expr(c);
expr const & rhs = cnstr_rhs_expr(c);
if (is_eq_deltas(lhs, rhs)) {
// we need to create a backtracking point for this one
add_cnstr(c, cnstr_group::Basic);
} else if (is_meta(lhs) && is_meta(rhs)) {
// flex-flex constraints are delayed the most.
unsigned cidx = add_cnstr(c, cnstr_group::FlexFlex);
add_meta_occ(lhs, cidx);
add_meta_occ(rhs, cidx);
} else if (m_tc->may_reduce_later(lhs) ||
m_tc->may_reduce_later(rhs) ||
m_plugin->delay_constraint(*m_tc, c)) {
unsigned cidx = add_cnstr(c, cnstr_group::PluginDelayed);
add_meta_occs(lhs, cidx);
add_meta_occs(rhs, cidx);
} else if (is_meta(lhs)) {
// flex-rigid constraints are delayed.
unsigned cidx = add_cnstr(c, cnstr_group::FlexRigid);
add_meta_occ(lhs, cidx);
} else if (is_meta(rhs)) {
// flex-rigid constraints are delayed.
unsigned cidx = add_cnstr(c, cnstr_group::FlexRigid);
add_meta_occ(rhs, cidx);
} else {
// this constraints require the unifier plugin to be solved
add_cnstr(c, cnstr_group::Basic);
}
return true;
}
/**
\brief Process a universe level constraints of the form <tt>?m =?= rhs</tt>. It fails if rhs contains \c ?m and
is definitely bigger than \c ?m.
TODO(Leo): we should improve this method in the future. It is doing only very basic things.
*/
status process_metavar_eq(level const & lhs, level const & rhs, justification const & j) {
if (!is_meta(lhs))
return Continue;
bool contains = occurs_meta(lhs, rhs);
if (contains) {
if (is_succ(rhs)) {
set_conflict(j);
return Failed;
} else {
return Continue;
}
}
lean_assert(!m_subst.is_assigned(lhs));
if (assign(lhs, rhs, j)) {
return Solved;
} else {
set_conflict(j);
return Failed;
}
}
/** \brief Process a universe level contraints. */
bool process_level_eq_constraint(constraint const & c) {
lean_assert(is_level_eq_cnstr(c));
// instantiate assigned metavariables
constraint new_c = instantiate_metavars(c).first;
level lhs = cnstr_lhs_level(new_c);
level rhs = cnstr_rhs_level(new_c);
justification jst = new_c.get_justification();
// normalize lhs and rhs
lhs = normalize(lhs);
rhs = normalize(rhs);
// eliminate outermost succs
while (is_succ(lhs) && is_succ(rhs)) {
lhs = succ_of(lhs);
rhs = succ_of(rhs);
}
if (lhs == rhs)
return true; // trivial constraint
if (!has_meta(lhs) && !has_meta(rhs)) {
set_conflict(jst);
return false; // trivial failure
}
status st = process_metavar_eq(lhs, rhs, jst);
if (st != Continue) return st == Solved;
st = process_metavar_eq(rhs, lhs, jst);
if (st != Continue) return st == Solved;
if (lhs != cnstr_lhs_level(new_c) || rhs != cnstr_rhs_level(new_c))
new_c = mk_level_eq_cnstr(lhs, rhs, new_c.get_justification());
add_cnstr(new_c, cnstr_group::FlexRigid);
return true;
}
bool preprocess_choice_constraint(constraint c) {
if (!cnstr_on_demand(c)) {
if (cnstr_is_owner(c)) {
expr m = get_app_fn(cnstr_expr(c));
lean_assert(is_metavar(m));
m_owned_map.insert(mlocal_name(m), cnstr_delay_factor(c));
}
add_cnstr(c, get_choice_cnstr_group(c));
return true;
} else {
expr m = cnstr_expr(c);
// choice constraints that are marked as "on demand"
// are only processed when all metavariables in the
// type of m have been instantiated.
expr type;
justification jst;
if (auto it = m_type_map.find(m)) {
// Type of m is already cached in m_type_map
type = it->first;
jst = it->second;
} else {
// Type of m is not cached yet, we
// should infer it, process generated
// constraints and save the result in
// m_type_map.
constraint_seq cs;
optional<expr> t = infer(m, cs);
if (!t) {
set_conflict(c.get_justification());
return false;
}
if (!process_constraints(cs, c.get_justification()))
return false;
type = *t;
m_type_map.insert(m, mk_pair(type, justification()));
}
// Try to instantiate metavariables in type
pair<expr, justification> type_jst = m_subst.instantiate_metavars(type);
if (type_jst.first != type) {
// Type was modified by instantiation,
// we update the constraint justification,
// and store the new type in m_type_map
jst = mk_composite1(jst, type_jst.second);
type = type_jst.first;
c = update_justification(c, mk_composite1(c.get_justification(), jst));
m_type_map.insert(m, mk_pair(type, jst));
}
unsigned cidx = add_cnstr(c, cnstr_group::ClassInstance);
if (!add_meta_occs(type, cidx)) {
// type does not contain metavariables...
// so this "on demand" constraint is ready to be solved
m_cnstrs.erase(cnstr(c, cidx));
add_cnstr(c, cnstr_group::Basic);
m_type_map.erase(m);
}
return true;
}
}
/**
\brief Process the given constraint \c c. "Easy" constraints are solved, and the remaining ones
are added to the constraint queue m_cnstrs. By "easy", see the methods
#process_eq_constraint and #process_level_eq_constraint.
*/
bool process_constraint(constraint const & c) {
if (in_conflict())
return false;
check_full();
// std::cout << "process: " << c << "\n";
switch (c.kind()) {
case constraint_kind::Choice:
return preprocess_choice_constraint(c);
case constraint_kind::Eq:
return process_eq_constraint(c);
case constraint_kind::LevelEq:
return process_level_eq_constraint(c);
}
lean_unreachable(); // LCOV_EXCL_LINE
}
/**
\brief Process constraint with index \c cidx. The constraint is removed
from the constraint queue, and the method #process_constraint is invoked.
*/
bool process_constraint_cidx(unsigned cidx) {
if (in_conflict())
return false;
cnstr c(*g_dont_care_cnstr, cidx);
if (auto it = m_cnstrs.find(c)) {
constraint c2 = it->first;
m_cnstrs.erase(c);
return process_constraint(c2);
}
return true;
}
void add_case_split(std::unique_ptr<case_split> && cs) {
m_case_splits.push_back(std::move(cs));
}
// This method is used only for debugging purposes.
void display(std::ostream & out, justification const & j, unsigned indent = 0) {
for (unsigned i = 0; i < indent; i++)
out << " ";
out << j.pp(mk_print_formatter_factory()(m_env, options()), nullptr, m_subst) << "\n";
if (j.is_composite()) {
display(out, composite_child1(j), indent+2);
display(out, composite_child2(j), indent+2);
}
}
void pop_case_split() {
m_case_splits.pop_back();
}
bool resolve_conflict() {
lean_assert(in_conflict());
while (!m_case_splits.empty()) {
check_system();
justification conflict = *m_conflict;
std::unique_ptr<case_split> & d = m_case_splits.back();
if (!m_config.m_nonchronological || depends_on(conflict, d->m_assumption_idx)) {
d->m_failed_justifications = mk_composite1(d->m_failed_justifications, conflict);
if (d->next(*this)) {
reset_conflict();
return true;
}
} else {
pop_case_split();
}
}
return false;
}
bool next_lazy_constraints_case_split(lazy_constraints_case_split & cs) {
auto r = cs.m_tail.pull();
if (r) {
cs.restore_state(*this);
lean_assert(!in_conflict());
cs.m_tail = r->second;
return process_constraints(r->first, mk_composite1(cs.get_jst(), mk_assumption_justification(cs.m_assumption_idx)));
} else {
// update conflict
update_conflict(mk_composite1(*m_conflict, cs.m_failed_justifications));
pop_case_split();
return false;
}
}
bool process_lazy_constraints(lazy_list<constraints> const & l, justification const & j) {
auto r = l.pull();
if (r) {
if (r->second.is_nil()) {
// there is only one alternative
return process_constraints(r->first, j);
} else {
justification a = mk_assumption_justification(m_next_assumption_idx);
add_case_split(std::unique_ptr<case_split>(new lazy_constraints_case_split(*this, j, r->second)));
return process_constraints(r->first, mk_composite1(j, a));
}
} else {
set_conflict(j);
return false;
}
}
/** \brief Given a constraint of the form
f a_1 ... a_n =?= f b_1 ... b_n
Return singleton stream with the possible solution
a_i =?= b_i
If c is not of the expected form, then return the empty stream.
*/
lazy_list<constraints> process_const_const_cnstr(constraint const & c) {
if (!is_eq_cnstr(c))
return lazy_list<constraints>();
expr const & lhs = cnstr_lhs_expr(c);
expr const & rhs = cnstr_rhs_expr(c);
expr const & f_lhs = get_app_fn(lhs);
expr const & f_rhs = get_app_fn(rhs);
if (!is_constant(f_lhs) || !is_constant(f_rhs) || const_name(f_lhs) != const_name(f_rhs))
return lazy_list<constraints>();
justification const & j = c.get_justification();
constraint_seq cs;
auto fcs = m_tc->is_def_eq(f_lhs, f_rhs, j);
if (!fcs.first)
return lazy_list<constraints>();
cs = fcs.second;
buffer<expr> args_lhs, args_rhs;
get_app_args(lhs, args_lhs);
get_app_args(rhs, args_rhs);
if (args_lhs.size() != args_rhs.size())
return lazy_list<constraints>();
for (unsigned i = 0; i < args_lhs.size(); i++) {
auto acs = m_tc->is_def_eq(args_lhs[i], args_rhs[i], j);
if (!acs.first)
return lazy_list<constraints>();
cs = acs.second + cs;
}
return lazy_list<constraints>(cs.to_list());
}
bool process_plugin_constraint(constraint const & c) {
lean_assert(!is_choice_cnstr(c));
lazy_list<constraints> alts = m_plugin->solve(*m_tc, c, m_ngen.mk_child());
alts = append(alts, process_const_const_cnstr(c));
return process_lazy_constraints(alts, c.get_justification());
}
bool process_choice_constraint(constraint const & c) {
lean_assert(is_choice_cnstr(c));
expr const & m = cnstr_expr(c);
choice_fn const & fn = cnstr_choice_fn(c);
if (cnstr_is_owner(c)) {
// choice will have a chance to assign m, so
// we remove the "barrier" that was preventing m from being assigned.
m_owned_map.erase(mlocal_name(get_app_fn(m)));
}
expr m_type;
constraint_seq cs;
if (auto type = infer(m, cs)) {
m_type = *type;
if (!process_constraints(cs))
return false;
} else {
set_conflict(c.get_justification());
return false;
}
auto m_type_jst = m_subst.instantiate_metavars(m_type);
lazy_list<constraints> alts = fn(m, m_type_jst.first, m_subst, m_ngen.mk_child());
return process_lazy_constraints(alts, mk_composite1(c.get_justification(), m_type_jst.second));
}
bool next_simple_case_split(simple_case_split & cs) {
if (!is_nil(cs.m_tail)) {
cs.restore_state(*this);
lean_assert(!in_conflict());
constraints c = head(cs.m_tail);
cs.m_tail = tail(cs.m_tail);
return process_constraints(c, mk_composite1(cs.get_jst(), mk_assumption_justification(cs.m_assumption_idx)));
} else {
// update conflict
update_conflict(mk_composite1(*m_conflict, cs.m_failed_justifications));
pop_case_split();
return false;
}
}
bool unfold_delta(constraint const & c, justification const & extra_j) {
expr const & lhs = cnstr_lhs_expr(c);
expr const & rhs = cnstr_rhs_expr(c);
buffer<expr> lhs_args, rhs_args;
justification j = c.get_justification();
expr lhs_fn = get_app_rev_args(lhs, lhs_args);
expr rhs_fn = get_app_rev_args(rhs, rhs_args);
declaration d = *m_env.find(const_name(lhs_fn));
expr lhs_fn_val = instantiate_value_univ_params(d, const_levels(lhs_fn));
expr rhs_fn_val = instantiate_value_univ_params(d, const_levels(rhs_fn));
expr t = apply_beta(lhs_fn_val, lhs_args.size(), lhs_args.data());
expr s = apply_beta(rhs_fn_val, rhs_args.size(), rhs_args.data());
auto dcs = m_tc->is_def_eq(t, s, j);
if (dcs.first) {
constraints cnstrs = dcs.second.to_list();
return process_constraints(cnstrs, extra_j);
} else {
set_conflict(j);
return false;
}
}
bool next_delta_unfold_case_split(delta_unfold_case_split & cs) {
if (!cs.m_done) {
cs.restore_state(*this);
cs.m_done = true;
constraint const & c = cs.m_cnstr;
justification j = mk_composite1(cs.get_jst(), mk_assumption_justification(cs.m_assumption_idx));
return unfold_delta(c, j);
} else {
// update conflict
update_conflict(mk_composite1(*m_conflict, cs.m_failed_justifications));
pop_case_split();
return false;
}
}
/**
\brief Solve constraints of the form (f a_1 ... a_n) =?= (f b_1 ... b_n) where f can be expanded.
We consider two possible solutions:
1) a_1 =?= b_1, ..., a_n =?= b_n
2) t =?= s, where t and s are the terms we get after expanding f
*/
bool process_delta(constraint const & c) {
lean_assert(is_delta_cnstr(c));
expr const & lhs = cnstr_lhs_expr(c);
expr const & rhs = cnstr_rhs_expr(c);
buffer<expr> lhs_args, rhs_args;
justification j = c.get_justification();
expr lhs_fn = get_app_rev_args(lhs, lhs_args);
expr rhs_fn = get_app_rev_args(rhs, rhs_args);
declaration d = *m_env.find(const_name(lhs_fn));
levels lhs_lvls = const_levels(lhs_fn);
levels rhs_lvls = const_levels(rhs_fn);
if (length(lhs_lvls) != length(rhs_lvls) ||
d.get_num_univ_params() != length(lhs_lvls)) {
// the constraint is not well-formed, this can happen when users are abusing the API
set_conflict(j);
return false;
}
if (lhs_args.size() != rhs_args.size())
return unfold_delta(c, justification());
justification a;
if (m_config.m_kind == unifier_kind::Liberal &&
(m_config.m_computation || module::is_definition(m_env, d.get_name()) || is_at_least_quasireducible(m_env, d.get_name()))) {
// add case_split for t =?= s
a = mk_assumption_justification(m_next_assumption_idx);
add_case_split(std::unique_ptr<case_split>(new delta_unfold_case_split(*this, j, c)));
}
// process first case
justification new_j = mk_composite1(j, a);
while (!is_nil(lhs_lvls)) {
level lhs = head(lhs_lvls);
level rhs = head(rhs_lvls);
if (!process_constraint(mk_level_eq_cnstr(lhs, rhs, new_j)))
return false;
lhs_lvls = tail(lhs_lvls);
rhs_lvls = tail(rhs_lvls);
}
unsigned i = lhs_args.size();
while (i > 0) {
--i;
if (!is_def_eq(lhs_args[i], rhs_args[i], new_j))
return false;
}
return true;
}
/** \brief Return true iff \c c is a flex-rigid constraint. */
static bool is_flex_rigid(constraint const & c) {
if (!is_eq_cnstr(c))
return false;
bool is_lhs_meta = is_meta(cnstr_lhs_expr(c));
bool is_rhs_meta = is_meta(cnstr_rhs_expr(c));
return is_lhs_meta != is_rhs_meta;
}
/** \brief Return true iff \c c is a flex-flex constraint */
static bool is_flex_flex(constraint const & c) {
return is_eq_cnstr(c) && is_meta(cnstr_lhs_expr(c)) && is_meta(cnstr_rhs_expr(c));
}
/** \brief Append the auxiliary constraints \c aux to each alternative in \c alts */
void append_auxiliary_constraints(buffer<constraints> & alts, list<constraint> const & aux) {
if (is_nil(aux))
return;
for (constraints & cs : alts)
cs = append(aux, cs);
}
/** \see ensure_sufficient_args */
expr ensure_sufficient_args_core(expr mtype, unsigned nargs, unsigned i, constraint_seq & cs) {
if (i == nargs)
return mtype;
mtype = m_tc->ensure_pi(mtype, cs);
expr local = mk_local_for(mtype);
expr body = instantiate(binding_body(mtype), local);
return Pi(local, ensure_sufficient_args_core(body, nargs, i+1, cs));
}
/** \brief Make sure mtype is a Pi of size at least nargs.
If it is not, we use ensure_pi and (potentially) add new constaints to enforce it.
*/
expr ensure_sufficient_args(expr const & mtype, unsigned nargs, constraint_seq & cs) {
expr t = mtype;
unsigned num = 0;
while (is_pi(t)) {
num++;
t = binding_body(t);
}
if (num >= nargs)
return mtype;
return ensure_sufficient_args_core(mtype, nargs, 0, cs);
}
/** \brief Auxiliary functional object for implementing process_flex_rigid_core */
class flex_rigid_core_fn {
unifier_fn & u;
expr const & lhs;
buffer<expr> margs;
expr const & m;
expr const & rhs;
justification j;
buffer<constraints> & alts; // result: alternatives
bool imitation_only; // if true, then only imitation step is used
optional<bool> _has_meta_args;
bool cheap() const { return u.m_config.m_kind == unifier_kind::Cheap; }
bool pattern() const { return u.m_config.m_pattern; }
type_checker & tc() {
return *u.m_tc;
}
type_checker & restricted_tc() {
if (u.m_config.m_computation)
return *u.m_tc;
else
return *u.m_flex_rigid_tc;
}
/** \brief Return true if margs contains an expression \c e s.t. is_meta(e) */
bool has_meta_args() {
if (!_has_meta_args) {
_has_meta_args = std::any_of(margs.begin(), margs.end(),
[](expr const & e) { return is_meta(e); });
}
return *_has_meta_args;
}
/**
\brief Given t
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), B[x_1, ..., x_n]</tt>
return
<tt>fun (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), v[x_1, ... x_n]</tt>
\remark v has free variables.
*/
expr mk_lambda_for(unsigned i, expr const & t, expr const & v) {
if (i < margs.size()) {
return mk_lambda(binding_name(t), binding_domain(t), mk_lambda_for(i+1, binding_body(t), v), binding_info(t));
} else {
return v;
}
}
expr mk_lambda_for(expr const & t, expr const & v) {
return mk_lambda_for(0, t, v);
}
/** \brief Return true if \c local occurs once in the buffer \c es. */
bool local_occurs_once(expr const & local, buffer<expr> const & es) {
bool found = false;
for (expr const & e : es) {
if (is_local(e) && mlocal_name(e) == mlocal_name(local)) {
if (found)
return false;
found = true;
}
}
return true;
}
/** \brief Make sure mtype is a Pi of size at least margs.size(). */
expr ensure_sufficient_args(expr const & mtype, constraint_seq & cs) {
return u.ensure_sufficient_args(mtype, margs.size(), cs);
}
/**
\brief Given
m := a metavariable ?m
rhs := sort, constant
Then solve (?m a_1 ... a_k) =?= rhs, by returning the constraint
?m =?= fun (x1 ... x_k), rhs
*/
void mk_simple_imitation() {
lean_assert(is_metavar(m));
lean_assert(is_sort(rhs) || is_constant(rhs));
expr const & mtype = mlocal_type(m);
constraint_seq cs;
expr new_mtype = ensure_sufficient_args(mtype, cs);
cs = cs + mk_eq_cnstr(m, mk_lambda_for(new_mtype, rhs), j);
alts.push_back(cs.to_list());
}
bool restricted_is_def_eq(expr const & marg, expr const & rhs, justification const & j, constraint_seq & cs) {
try {
if (restricted_tc().is_def_eq(marg, rhs, j, cs)) {
return true;
} else {
return false;
}
} catch (exception & ex) {
return false;
}
}
/**
Given,
m := a metavariable ?m
margs := [a_1 ... a_k]
We say a unification problem (?m a_1 ... a_k) =?= rhs uses "simple nonlocal i-th projection" when
1) rhs is not a local constant
2) is_def_eq(a_i, rhs) does not fail
In this case, we add
a_i =?= rhs
?m =?= fun x_1 ... x_k, x_i
to alts as a possible solution.
*/
void mk_simple_nonlocal_projection(unsigned i) {
expr const & mtype = mlocal_type(m);
unsigned vidx = margs.size() - i - 1;
expr const & marg = margs[i];
constraint_seq cs;
auto new_mtype = ensure_sufficient_args(mtype, cs);
// Remark: we should not use mk_eq_cnstr(marg, rhs, j) since is_def_eq may be able to reduce them.
// The unifier assumes the eq constraints are reduced.
if (tc().is_def_eq_types(marg, rhs, j, cs) &&
restricted_is_def_eq(marg, rhs, j, cs)) {
expr v = mk_lambda_for(new_mtype, mk_var(vidx));
cs = cs + mk_eq_cnstr(m, v, j);
alts.push_back(cs.to_list());
}
}
/**
Given,
m := a metavariable ?m
margs := [a_1 ... a_k]
We say a unification problem (?m a_1 ... a_k) =?= rhs uses "simple projections" when
If (rhs and a_i are *not* local constants) OR (rhs is a local constant and a_i is a metavariable application),
then we add the constraints
a_i =?= rhs
?m =?= fun x_1 ... x_k, x_i
to alts as a possible solution.
If rhs is a local constant and a_i == rhs, then we add the constraint
?m =?= fun x_1 ... x_k, x_i
to alts as a possible solution when a_i is the same local constant or a metavariable application
*/
void mk_simple_projections() {
lean_assert(is_metavar(m));
lean_assert(!is_meta(rhs));
expr const & mtype = mlocal_type(m);
unsigned i = margs.size();
while (i > 0) {
unsigned vidx = margs.size() - i;
--i;
expr const & marg = margs[i];
if ((!is_local(marg) && !is_local(rhs)) || (is_meta(marg) && is_local(rhs))) {
// if rhs is not local, then we only add projections for the nonlocal arguments of lhs
mk_simple_nonlocal_projection(i);
if (cheap())
return;
} else if (is_local(marg) && is_local(rhs) && mlocal_name(marg) == mlocal_name(rhs)) {
// if the argument is local, and rhs is equal to it, then we also add a projection
constraint_seq cs;
auto new_mtype = ensure_sufficient_args(mtype, cs);
expr v = mk_lambda_for(new_mtype, mk_var(vidx));
cs = cs + mk_eq_cnstr(m, v, j);
alts.push_back(cs.to_list());
if (cheap())
return;
}
}
}
void mk_app_projections() {
lean_assert(is_metavar(m));
lean_assert(is_app(rhs));
if (!pattern() && !cheap()) {
expr const & f = get_app_fn(rhs);
lean_assert(is_constant(f) || is_local(f));
if (is_local(f)) {
unsigned i = margs.size();
while (i > 0) {
--i;
if (!(is_local(margs[i]) && mlocal_name(margs[i]) == mlocal_name(f)))
mk_simple_nonlocal_projection(i);
}
} else {
mk_simple_projections();
}
}
}
/** \brief Create the local context \c locals for the imitation step.
*/
void mk_local_context(buffer<expr> & locals, constraint_seq & cs) {
expr mtype = mlocal_type(m);
unsigned nargs = margs.size();
mtype = ensure_sufficient_args(mtype, cs);
expr it = mtype;
for (unsigned i = 0; i < nargs; i++) {
expr d = instantiate_rev(binding_domain(it), locals.size(), locals.data());
auto d_jst = u.m_subst.instantiate_metavars(d);
d = d_jst.first;
j = mk_composite1(j, d_jst.second);
name n;
if (is_local(margs[i]) && local_occurs_once(margs[i], margs)) {
n = mlocal_name(margs[i]);
} else {
n = u.m_ngen.next();
}
expr local = mk_local(n, binding_name(it), d, binding_info(it));
locals.push_back(local);
it = binding_body(it);
}
}
expr mk_imitation_arg(expr const & arg, expr const & type, buffer<expr> const & locals,
constraint_seq & cs) {
// The following optimization is broken. It does not really work when we have dependent
// types. The problem is that the type of arg may depend on other arguments,
// and constraints are not generated to enforce it.
//
// Here is a minimal counterexample
// ?M A B a b H B b =?= heq.type_eq A B a b H
// with this optimization the imitation is
//
// ?M := fun (A B a b H B' b'), heq.type_eq A (?M1 A B a b H B' b') a (?M2 A B a b H B' b') H
//
// This imitation is only correct if
// typeof(H) is (heq A a (?M1 A B a b H B' b') (?M2 A B a b H B' b'))
//
// Adding an extra constraint is problematic since typeof(H) may contain local constants,
// and these local constants may have been "renamed" by mk_local_context above
//
// For now, we simply comment the optimization.
//
// Broken optimization
// if (!has_meta_args() && is_local(arg) && contains_local(arg, locals)) {
// return arg;
// }
// The following code is not affected by the problem above because we
// attach the type \c type to the new metavariables being created.
// std::cout << "type: " << type << "\n";
if (context_check(type, locals)) {
expr maux = mk_metavar(u.m_ngen.next(), Pi(locals, type));
// std::cout << " >> " << maux << " : " << mlocal_type(maux) << "\n";
cs = mk_eq_cnstr(mk_app(maux, margs), arg, j) + cs;
return mk_app(maux, locals);
} else {
expr maux_type = mk_metavar(u.m_ngen.next(), Pi(locals, mk_sort(mk_meta_univ(u.m_ngen.next()))));
expr maux = mk_metavar(u.m_ngen.next(), Pi(locals, mk_app(maux_type, locals)));
cs = mk_eq_cnstr(mk_app(maux, margs), arg, j) + cs;
return mk_app(maux, locals);
}
}
void mk_app_imitation_core(expr const & f, buffer<expr> const & locals, constraint_seq & cs) {
buffer<expr> rargs;
get_app_args(rhs, rargs);
buffer<expr> sargs;
try {
expr f_type = tc().infer(f, cs);
for (expr const & rarg : rargs) {
f_type = tc().ensure_pi(f_type, cs);
expr d_type = binding_domain(f_type);
expr sarg = mk_imitation_arg(rarg, d_type, locals, cs);
sargs.push_back(sarg);
f_type = instantiate(binding_body(f_type), sarg);
}
} catch (exception&) {}
expr v = Fun(locals, mk_app(f, sargs));
cs += mk_eq_cnstr(m, v, j);
alts.push_back(cs.to_list());
}
/**
\brief Given
m := a metavariable ?m
margs := [a_1 ... a_k]
rhs := (f b_1 ... b_n)
Then create the constraints
(?m_1 a_1 ... a_k) =?= b_1
...
(?m_n a_1 ... a_k) =?= b_n
?m =?= fun (x_1 ... x_k), g (?m_1 x_1 ... x_k) ... (?m_n x_1 ... x_k)
If f is a constant (or a macro), then g is f.
If f is a local constant, then we consider each a_i that is equal to f.
Remark: we try to minimize the number of constraints (?m_i a_1 ... a_k) =?= b_i by detecting "easy" cases
that can be solved immediately. See \c mk_imitation_arg
*/
void mk_app_imitation() {
lean_assert(is_metavar(m));
lean_assert(is_app(rhs));
buffer<expr> locals;
constraint_seq cs;
flet<justification> let(j, j); // save j value
mk_local_context(locals, cs);
lean_assert(margs.size() == locals.size());
expr const & f = get_app_fn(rhs);
lean_assert(is_constant(f) || is_macro(f) || is_local(f));
if (is_local(f)) {
unsigned i = margs.size();
while (i > 0) {
--i;
if (is_local(margs[i]) && mlocal_name(margs[i]) == mlocal_name(f)) {
constraint_seq new_cs = cs;
mk_app_imitation_core(locals[i], locals, new_cs);
}
}
} else {
lean_assert(is_constant(f) || is_macro(f));
mk_app_imitation_core(f, locals, cs);
}
}
/**
\brief Given
m := a metavariable ?m
margs := [a_1 ... a_k]
rhs := (fun/Pi (y : A), B y)
Then create the constraints
(?m_1 a_1 ... a_k) =?= A
(?m_2 a_1 ... a_k l) =?= B l
?m =?= fun (x_1 ... x_k), fun/Pi (y : ?m_1 x_1 ... x_k), ?m_2 x_1 ... x_k y
where l is a fresh local constant.
*/
void mk_bindings_imitation() {
lean_assert(is_metavar(m));
lean_assert(is_binding(rhs));
constraint_seq cs;
buffer<expr> locals;
flet<justification> let(j, j); // save j value
mk_local_context(locals, cs);
lean_assert(margs.size() == locals.size());
try {
// create a scope to make sure no constraints "leak" into the current state
expr rhs_A = binding_domain(rhs);
expr A_type = tc().infer(rhs_A, cs);
expr A = mk_imitation_arg(rhs_A, A_type, locals, cs);
expr local = mk_local(u.m_ngen.next(), binding_name(rhs), A, binding_info(rhs));
locals.push_back(local);
margs.push_back(local);
expr rhs_B = instantiate(binding_body(rhs), local);
expr B_type = tc().infer(rhs_B, cs);
expr B = mk_imitation_arg(rhs_B, B_type, locals, cs);
expr binding = is_pi(rhs) ? Pi(local, B) : Fun(local, B);
locals.pop_back();
expr v = Fun(locals, binding);
cs += mk_eq_cnstr(m, v, j);
alts.push_back(cs.to_list());
} catch (exception&) {}
margs.pop_back();
}
public:
flex_rigid_core_fn(unifier_fn & _u, expr const & _lhs, expr const & _rhs,
justification const & _j, buffer<constraints> & _alts,
bool _imitation_only):
u(_u), lhs(_lhs), m(get_app_args(lhs, margs)), rhs(_rhs), j(_j), alts(_alts),
imitation_only(_imitation_only) {}
void operator()() {
switch (rhs.kind()) {
case expr_kind::Var: case expr_kind::Meta:
lean_unreachable(); // LCOV_EXCL_LINE
case expr_kind::Local:
mk_simple_projections();
break;
case expr_kind::Sort: case expr_kind::Constant:
if (!pattern() && !cheap() && !imitation_only)
mk_simple_projections();
mk_simple_imitation();
break;
case expr_kind::Pi: case expr_kind::Lambda:
if (!pattern() && !cheap() && !imitation_only)
mk_simple_projections();
mk_bindings_imitation();
break;
case expr_kind::Macro:
lean_unreachable(); // LCOV_EXCL_LINE
case expr_kind::App:
if (!imitation_only)
mk_app_projections();
mk_app_imitation();
break;
}
}
};
void process_flex_rigid_core(expr const & lhs, expr const & rhs, justification const & j,
buffer<constraints> & alts, bool imitation_only) {
flex_rigid_core_fn(*this, lhs, rhs, j, alts, imitation_only)();
}
/** \brief When lhs is an application (f ...), make sure that if any argument that is reducible to a
local constant is replaced with a local constant.
\remark We store auxiliary constraints created in the reductions in \c aux. We return the new
"reduce" application.
*/
expr expose_local_args(expr const & lhs, justification const & j, buffer<constraint> & aux) {
buffer<expr> margs;
expr m = get_app_args(lhs, margs);
bool modified = false;
for (expr & marg : margs) {
// Make sure that if marg is reducible to a local constant, then it is replaced with it.
if (!is_local(marg)) {
expr new_marg = whnf(marg, j, aux);
if (is_local(new_marg)) {
marg = new_marg;
modified = true;
}
}
}
return modified ? mk_app(m, margs) : lhs;
}
optional<expr> expand_rhs(expr const & rhs) {
buffer<expr> args;
expr const & f = get_app_rev_args(rhs, args);
lean_assert(!is_local(f) && !is_constant(f) && !is_var(f) && !is_metavar(f));
if (is_lambda(f)) {
return some_expr(apply_beta(f, args.size(), args.data()));
} else if (is_macro(f)) {
if (optional<expr> new_f = m_tc->expand_macro(f))
return some_expr(mk_rev_app(*new_f, args.size(), args.data()));
}
return none_expr();
}
/** \brief When solving flex-rigid constraints lhs =?= rhs (lhs is of the form ?M a_1 ... a_n),
we consider an additional case-split where rhs is put in weak-head-normal-form when
1- Option unifier.computation is true
2- At least one a_i is not a local constant
3- rhs contains a local constant that is not equal to any a_i.
*/
bool use_flex_rigid_whnf_split(expr const & lhs, expr const & rhs) {
lean_assert(is_meta(lhs));
if (m_config.m_kind != unifier_kind::Liberal)
return false;
if (m_config.m_computation)
return true; // if unifier.computation is true, we always consider the additional whnf split
buffer<expr> locals;
expr const * it = &lhs;
while (is_app(*it)) {
expr const & arg = app_arg(*it);
if (!is_local(arg))
return true; // lhs contains non-local constant
locals.push_back(arg);
it = &(app_fn(*it));
}
if (!context_check(rhs, locals))
return true; // rhs contains local constant that is not in locals
return false;
}
/** \brief Process a flex rigid constraint */
bool process_flex_rigid(expr lhs, expr const & rhs, justification const & j) {
lean_assert(is_meta(lhs));
lean_assert(!is_meta(rhs));
if (is_app(rhs)) {
expr const & f = get_app_fn(rhs);
if (!is_local(f) && !is_constant(f)) {
if (auto new_rhs = expand_rhs(rhs)) {
lean_assert(*new_rhs != rhs);
return is_def_eq(lhs, *new_rhs, j);
} else {
return false;
}
}
} else if (is_macro(rhs)) {
if (auto new_rhs = expand_rhs(rhs)) {
lean_assert(*new_rhs != rhs);
return is_def_eq(lhs, *new_rhs, j);
} else {
return false;
}
}
buffer<constraint> aux;
lhs = expose_local_args(lhs, j, aux);
buffer<constraints> alts;
process_flex_rigid_core(lhs, rhs, j, alts, false);
append_auxiliary_constraints(alts, to_list(aux.begin(), aux.end()));
if (use_flex_rigid_whnf_split(lhs, rhs)) {
expr rhs_whnf = flex_rigid_whnf(rhs, j, aux);
if (rhs_whnf != rhs) {
if (is_meta(rhs_whnf)) {
// it become a flex-flex constraint
alts.push_back(constraints(mk_eq_cnstr(lhs, rhs_whnf, j)));
} else {
buffer<constraints> alts2;
process_flex_rigid_core(lhs, rhs_whnf, j, alts2, true);
append_auxiliary_constraints(alts2, to_list(aux.begin(), aux.end()));
alts.append(alts2);
}
}
}
// std::cout << "FlexRigid\n";
// for (auto cs : alts) {
// std::cout << " alternative\n";
// for (auto c : cs) {
// std::cout << " >> " << c << "\n";
// }
// }
if (alts.empty()) {
set_conflict(j);
return false;
} else if (alts.size() == 1) {
// we don't need to create a backtracking point
return process_constraints(alts[0], justification());
} else {
justification a = mk_assumption_justification(m_next_assumption_idx);
add_case_split(std::unique_ptr<case_split>(new simple_case_split(*this, j, to_list(alts.begin() + 1, alts.end()))));
return process_constraints(alts[0], a);
}
}
/** \brief Process a flex rigid constraint */
bool process_flex_rigid(constraint const & c) {
lean_assert(is_flex_rigid(c));
expr lhs = cnstr_lhs_expr(c);
expr rhs = cnstr_rhs_expr(c);
if (is_meta(lhs))
return process_flex_rigid(lhs, rhs, c.get_justification());
else
return process_flex_rigid(rhs, lhs, c.get_justification());
}
void postpone(constraint const & c) {
m_postponed = cons(c, m_postponed);
}
void discard(constraint const & c) {
if (!m_config.m_discard)
postpone(c);
}
// Auxiliary method used in process_flex_flex_approx
bool assign_flex_approx(expr const & m, expr const & v, justification const & j, constraint_seq & cs) {
lean_assert(m_config.m_discard);
buffer<expr> args;
expr const & fn = get_app_args(m, args);
lean_assert(is_metavar(fn));
expr type = mlocal_type(fn);
type = ensure_sufficient_args(type, args.size(), cs);
buffer<expr> locals;
for (expr const & a : args) {
expr local = is_local(a) ? a : mk_local_for(type);
locals.push_back(local);
type = instantiate(binding_body(type), local);
}
return assign(m, fn, locals, v, j);
}
bool process_flex_flex_approx(constraint const & c) {
lean_assert(m_config.m_discard);
// Try to solve constraint
// ?M_1 t_1 ... t_n =?= ?M_2 s_1 ... s_m
// by creating a fresh metavariable ?M using common local constants.
// If can't build approximate solution, then discard constraint.
expr const & lhs = cnstr_lhs_expr(c);
expr const & rhs = cnstr_rhs_expr(c);
buffer<expr> lhs_args, rhs_args;
get_app_args(lhs, lhs_args);
get_app_args(rhs, rhs_args);
buffer<expr> shared_locals;
unsigned sz = std::min(lhs_args.size(), rhs_args.size());
unsigned i = 0;
for (; i < sz; i++) {
if (!is_local(lhs_args[i]) || !is_local(rhs_args[i]) ||
mlocal_name(lhs_args[i]) != mlocal_name(rhs_args[i]))
break;
shared_locals.push_back(lhs_args[i]);
}
constraint_seq cs;
if (optional<expr> lhs_type = infer(lhs, cs)) {
expr new_type = Pi(shared_locals, *lhs_type);
if (!has_local(new_type)) {
expr new_mvar = mk_metavar(m_ngen.next(), new_type);
expr new_val = mk_app(new_mvar, shared_locals);
justification const & j = c.get_justification();
return
assign_flex_approx(lhs, new_val, j, cs) &&
assign_flex_approx(rhs, new_val, j, cs) &&
process_constraints(cs, c.get_justification());
}
}
// Failed to generate approximate solution.
// TODO(Leo): generate an error, or just ingore?
// we are currently just ignoring...
return true;
}
bool process_flex_flex(constraint const & c) {
expr const & lhs = cnstr_lhs_expr(c);
expr const & rhs = cnstr_rhs_expr(c);
// We ignore almost all flex-flex constraints.
// We just handle flex_flex "first-order" case
// ?M_1 l_1 ... l_k =?= ?M_2 l_1 ... l_k
// ?M_1 l_1 ... l_k =?= ?M_2 l_1 ... l_k ... l_n
// ?M_1 l_1 ... l_k ... l_n =?= ?M_2 l_1 ... l_k
if (!is_simple_meta(lhs) || !is_simple_meta(rhs)) {
if (m_config.m_discard) {
return process_flex_flex_approx(c);
} else {
discard(c);
return true;
}
}
buffer<expr> lhs_args, rhs_args;
expr ml = get_app_args(lhs, lhs_args);
expr mr = get_app_args(rhs, rhs_args);
if (mlocal_name(ml) == mlocal_name(mr)) {
discard(c);
return true;
}
unsigned min_sz = std::min(lhs_args.size(), rhs_args.size());
lean_assert(!m_subst.is_assigned(ml));
lean_assert(!m_subst.is_assigned(mr));
unsigned i = 0;
for (; i < min_sz; i++)
if (mlocal_name(lhs_args[i]) != mlocal_name(rhs_args[i]))
break;
if (i == min_sz) {
if (lhs_args.size() >= rhs_args.size()) {
return assign(lhs, ml, lhs_args, rhs, c.get_justification());
} else {
return assign(rhs, mr, rhs_args, lhs, c.get_justification());
}
} else {
discard(c);
return true;
}
}
/** \brief Return true iff \c rhs is of the form <tt> max(l_1 ... lhs ... l_k) </tt>,
such that l_i's do not contain lhs.
If the result is true, then all l_i's are stored in rest.
*/
static bool generalized_check_meta(level const & m, level const & rhs, bool & found_m, buffer<level> & rest) {
lean_assert(is_meta(m));
if (is_max(rhs)) {
return
generalized_check_meta(m, max_lhs(rhs), found_m, rest) &&
generalized_check_meta(m, max_rhs(rhs), found_m, rest);
} else if (m == rhs) {
found_m = true;
return true;
} else if (occurs_meta(m, rhs)) {
return false;
} else {
rest.push_back(rhs);
return true;
}
}
status process_l_eq_max_core(level const & lhs, level const & rhs, justification const & jst) {
lean_assert(is_meta(lhs));
buffer<level> rest;
bool found_lhs = false;
if (generalized_check_meta(lhs, rhs, found_lhs, rest)) {
level r;
if (found_lhs) {
// rhs is of the form max(rest, lhs)
// Solution is lhs := max(rest, ?u) where ?u is fresh metavariable
r = mk_meta_univ(m_ngen.next());
rest.push_back(r);
unsigned i = rest.size();
while (i > 0) {
--i;
r = mk_max(rest[i], r);
}
r = normalize(r);
} else {
// lhs does not occur in rhs
r = rhs;
}
if (assign(lhs, r, jst)) {
return Solved;
} else {
set_conflict(jst);
return Failed;
}
} else {
return Continue;
}
}
/** \brief Return solved iff \c c is a constraint of the form
lhs =?= max(rest, lhs)
and is successfully solved.
*/
status process_l_eq_max(constraint const & c) {
lean_assert(is_level_eq_cnstr(c));
level lhs = cnstr_lhs_level(c);
level rhs = cnstr_rhs_level(c);
justification jst = c.get_justification();
if (is_meta(lhs))
return process_l_eq_max_core(lhs, rhs, jst);
else if (is_meta(rhs))
return process_l_eq_max_core(rhs, lhs, jst);
else
return Continue;
}
/** Auxiliary method for process_succ_eq_max */
status process_succ_eq_max_core(level const & lhs, level const & rhs, justification const & jst) {
if (!is_succ(lhs) || !is_max(rhs))
return Continue;
level m = rhs;
while (is_max(m)) {
level m1 = max_lhs(m);
level m2 = max_rhs(m);
if (is_geq(lhs, m1)) {
m = m2;
} else if (is_geq(lhs, m2)) {
m = m1;
} else {
return Continue;
}
}
if (!is_meta(m))
return Continue;
if (assign(m, lhs, jst)) {
return Solved;
} else {
set_conflict(jst);
return Failed;
}
}
/** \brief Return Solved iff \c c is a constraint of the form
succ^k_1 a =?= max(succ^k_2 b, ?m)
where k_1 >= k_2 and a == b or b == zero
and is successfully solved by assigning ?m := succ^k_1 a
*/
status process_succ_eq_max(constraint const & c) {
lean_assert(is_level_eq_cnstr(c));
level lhs = cnstr_lhs_level(c);
level rhs = cnstr_rhs_level(c);
justification jst = c.get_justification();
status st = process_succ_eq_max_core(lhs, rhs, jst);
if (st != Continue) return st;
return process_succ_eq_max_core(rhs, lhs, jst);
}
/**
\brief Process the following constraints
1. (max l1 l2) =?= 0 OR
solution: l1 =?= 0, l2 =?= 0
2. (imax l1 l2) =?= 0
solution: l2 =?= 0
*/
status try_level_eq_zero(level const & lhs, level const & rhs, justification const & j) {
if (!is_zero(rhs))
return Continue;
if (is_max(lhs)) {
if (process_constraint(mk_level_eq_cnstr(max_lhs(lhs), rhs, j)) &&
process_constraint(mk_level_eq_cnstr(max_rhs(lhs), rhs, j)))
return Solved;
else
return Failed;
} else if (is_imax(lhs)) {
return process_constraint(mk_level_eq_cnstr(imax_rhs(lhs), rhs, j)) ? Solved : Failed;
} else {
return Continue;
}
}
status try_level_eq_zero(constraint const & c) {
lean_assert(is_level_eq_cnstr(c));
level const & lhs = cnstr_lhs_level(c);
level const & rhs = cnstr_rhs_level(c);
justification const & j = c.get_justification();
status st = try_level_eq_zero(lhs, rhs, j);
if (st != Continue) return st;
return try_level_eq_zero(rhs, lhs, j);
}
/** \brief Try to solve constraints of the form
(?m1 =?= max ?m2 ?m3)
(?m1 =?= max ?m2 ?m3)
by assigning ?m1 =?= ?m2 and ?m1 =?= ?m3
\remark we may miss solutions.
*/
status try_merge_max_core(level const & lhs, level const & rhs, justification const & j) {
level m1 = lhs;
level m2, m3;
if (is_max(rhs)) {
m2 = max_lhs(rhs);
m3 = max_rhs(rhs);
} else if (is_imax(rhs)) {
m2 = imax_lhs(rhs);
m3 = imax_rhs(rhs);
} else {
return Continue;
}
if (process_constraint(mk_level_eq_cnstr(m1, m2, j)) &&
process_constraint(mk_level_eq_cnstr(m1, m3, j)))
return Solved;
else
return Failed;
}
/** \see try_merge_max_core */
status try_merge_max(constraint const & c) {
lean_assert(is_level_eq_cnstr(c));
level const & lhs = cnstr_lhs_level(c);
level const & rhs = cnstr_rhs_level(c);
justification const & j = c.get_justification();
status st = try_merge_max_core(lhs, rhs, j);
if (st != Continue) return st;
return try_merge_max_core(rhs, lhs, j);
}
/** \brief Process the next constraint in the constraint queue m_cnstrs */
bool process_next() {
lean_assert(!m_cnstrs.empty());
auto const * p = m_cnstrs.min();
constraint c = p->first;
unsigned cidx = p->second;
if (cidx >= get_group_first_index(cnstr_group::ClassInstance) &&
is_choice_cnstr(c) && cnstr_on_demand(c)) {
// we postpone class-instance constraints whose type still contains metavariables
m_cnstrs.erase_min();
postpone(c);
return true;
}
// std::cout << "process_next: " << c << "\n";
m_cnstrs.erase_min();
if (is_choice_cnstr(c)) {
return process_choice_constraint(c);
} else {
auto r = instantiate_metavars(c);
c = r.first;
bool modified = r.second;
if (is_level_eq_cnstr(c)) {
if (modified) {
return process_constraint(c);
}
status st = process_l_eq_max(c);
if (st != Continue) return st == Solved;
st = process_succ_eq_max(c);
if (st != Continue) return st == Solved;
if (m_config.m_discard) {
// we only try try_level_eq_zero and try_merge_max when we are discarding
// constraints that canno be solved.
st = try_level_eq_zero(c);
if (st != Continue) return st == Solved;
if (cidx < get_group_first_index(cnstr_group::FlexFlex)) {
add_cnstr(c, cnstr_group::FlexFlex);
return true;
}
st = try_merge_max(c);
if (st != Continue) return st == Solved;
return process_plugin_constraint(c);
} else {
discard(c);
return true;
}
} else {
lean_assert(is_eq_cnstr(c));
if (is_delta_cnstr(c)) {
return process_delta(c);
} else if (modified) {
return is_def_eq(cnstr_lhs_expr(c), cnstr_rhs_expr(c), c.get_justification());
} else if (auto d = is_owned(c)) {
// Metavariable in the constraint is owned by choice constraint.
// choice constraint was postponed... since c was not modifed
// So, we should postpone this one too.
add_cnstr(c, to_cnstr_group(*d+1));
return true;
} else if (is_flex_rigid(c)) {
return process_flex_rigid(c);
} else if (is_flex_flex(c)) {
return process_flex_flex(c);
} else {
return process_plugin_constraint(c);
}
}
}
}
/** \brief Return true if unifier may be able to produce more solutions */
bool more_solutions() const {
return !in_conflict() || !m_case_splits.empty();
}
typedef optional<pair<substitution, constraints>> next_result;
next_result failure() {
lean_assert(in_conflict());
if (m_config.m_use_exceptions)
throw unifier_exception(*m_conflict, m_subst);
else
return next_result();
}
/** \brief Produce the next solution */
next_result next() {
if (!more_solutions())
return failure();
if (!m_first && !m_case_splits.empty()) {
justification all_assumptions;
for (auto const & cs : m_case_splits)
all_assumptions = mk_composite1(all_assumptions, mk_assumption_justification(cs->m_assumption_idx));
set_conflict(all_assumptions);
if (!resolve_conflict())
return failure();
} else if (m_first) {
m_first = false;
} else {
// This is not the first run, and there are no case-splits.
// We don't throw an exception since there are no more solutions.
return next_result();
}
while (true) {
if (!in_conflict()) {
if (m_cnstrs.empty())
break;
process_next();
}
if (in_conflict() && !resolve_conflict())
return failure();
}
lean_assert(!in_conflict());
lean_assert(m_cnstrs.empty());
substitution s = m_subst;
s.forget_justifications();
return next_result(mk_pair(s, m_postponed));
}
};
unify_result_seq unify(std::shared_ptr<unifier_fn> u) {
if (!u->more_solutions()) {
u->failure(); // make sure exception is thrown if u->m_use_exception is true
return unify_result_seq();
} else {
return mk_lazy_list<pair<substitution, constraints>>([=]() {
auto s = u->next();
if (s)
return some(mk_pair(*s, unify(u)));
else
return unify_result_seq::maybe_pair();
});
}
}
unify_result_seq unify(environment const & env, unsigned num_cs, constraint const * cs, name_generator && ngen,
substitution const & s, unifier_config const & cfg) {
return unify(std::make_shared<unifier_fn>(env, num_cs, cs, std::move(ngen), s, cfg));
}
unify_result_seq unify(environment const & env, expr const & lhs, expr const & rhs, name_generator && ngen,
substitution const & s, unifier_config const & cfg) {
substitution new_s = s;
expr _lhs = new_s.instantiate(lhs);
expr _rhs = new_s.instantiate(rhs);
auto u = std::make_shared<unifier_fn>(env, 0, nullptr, std::move(ngen), new_s, cfg);
constraint_seq cs;
if (!u->m_tc->is_def_eq(_lhs, _rhs, justification(), cs) || !u->process_constraints(cs)) {
return unify_result_seq();
} else {
return unify(u);
}
}
static int unify_simple(lua_State * L) {
int nargs = lua_gettop(L);
unify_status r;
if (nargs == 2)
r = unify_simple(to_substitution(L, 1), to_constraint(L, 2));
else if (nargs == 3 && is_expr(L, 2))
r = unify_simple(to_substitution(L, 1), to_expr(L, 2), to_expr(L, 3), justification());
else if (nargs == 3 && is_level(L, 2))
r = unify_simple(to_substitution(L, 1), to_level(L, 2), to_level(L, 3), justification());
else if (is_expr(L, 2))
r = unify_simple(to_substitution(L, 1), to_expr(L, 2), to_expr(L, 3), to_justification(L, 4));
else
r = unify_simple(to_substitution(L, 1), to_level(L, 2), to_level(L, 3), to_justification(L, 4));
return push_integer(L, static_cast<unsigned>(r));
}
DECL_UDATA(unify_result_seq)
static const struct luaL_Reg unify_result_seq_m[] = {
{"__gc", unify_result_seq_gc},
{0, 0}
};
static int unify_result_seq_next(lua_State * L) {
unify_result_seq seq = to_unify_result_seq(L, lua_upvalueindex(1));
unify_result_seq::maybe_pair p;
p = seq.pull();
if (p) {
push_unify_result_seq(L, p->second);
lua_replace(L, lua_upvalueindex(1));
push_substitution(L, p->first.first);
// TODO(Leo): return postponed constraints
} else {
lua_pushnil(L);
}
return 1;
}
static int push_unify_result_seq_it(lua_State * L, unify_result_seq const & seq) {
push_unify_result_seq(L, seq);
lua_pushcclosure(L, &safe_function<unify_result_seq_next>, 1); // create closure with 1 upvalue
return 1;
}
static void to_constraint_buffer(lua_State * L, int idx, buffer<constraint> & cs) {
luaL_checktype(L, idx, LUA_TTABLE);
lua_pushvalue(L, idx); // put table on top of the stack
int n = objlen(L, idx);
for (int i = 1; i <= n; i++) {
lua_rawgeti(L, -1, i);
cs.push_back(to_constraint(L, -1));
lua_pop(L, 1);
}
lua_pop(L, 1);
}
#if 0
static constraints to_constraints(lua_State * L, int idx) {
buffer<constraint> cs;
to_constraint_buffer(L, idx, cs);
return to_list(cs.begin(), cs.end());
}
static unifier_plugin to_unifier_plugin(lua_State * L, int idx) {
luaL_checktype(L, idx, LUA_TFUNCTION); // user-fun
luaref f(L, idx);
return unifier_plugin([=](constraint const & c, name_generator && ngen) {
lua_State * L = f.get_state();
f.push();
push_constraint(L, c);
push_name_generator(L, ngen);
pcall(L, 2, 1, 0);
lazy_list<constraints> r;
if (is_constraint(L, -1)) {
// single constraint
r = lazy_list<constraints>(constraints(to_constraint(L, -1)));
} else if (lua_istable(L, -1)) {
int num = objlen(L, -1);
if (num == 0) {
// empty table
r = lazy_list<constraints>();
} else {
lua_rawgeti(L, -1, 1);
if (is_constraint(L, -1)) {
// array of constraints case
lua_pop(L, 1);
r = lazy_list<constraints>(to_constraints(L, -1));
} else {
lua_pop(L, 1);
buffer<constraints> css;
// array of array of constraints
for (int i = 1; i <= num; i++) {
lua_rawgeti(L, -1, i);
css.push_back(to_constraints(L, -1));
lua_pop(L, 1);
}
r = to_lazy(to_list(css.begin(), css.end()));
}
}
} else if (lua_isnil(L, -1)) {
// nil case
r = lazy_list<constraints>();
} else {
throw exception("invalid unifier plugin, the result value must be a constrant, "
"nil, an array of constraints, or an array of arrays of constraints");
}
lua_pop(L, 1);
return r;
});
}
#endif
static name * g_tmp_prefix = nullptr;
static int unify(lua_State * L) {
int nargs = lua_gettop(L);
unify_result_seq r;
environment const & env = to_environment(L, 1);
if (is_expr(L, 2)) {
if (nargs == 6)
r = unify(env, to_expr(L, 2), to_expr(L, 3), to_name_generator(L, 4).mk_child(), to_substitution(L, 5),
unifier_config(to_options(L, 6)));
else if (nargs == 5)
r = unify(env, to_expr(L, 2), to_expr(L, 3), to_name_generator(L, 4).mk_child(), to_substitution(L, 5));
else
r = unify(env, to_expr(L, 2), to_expr(L, 3), to_name_generator(L, 4).mk_child());
} else {
buffer<constraint> cs;
to_constraint_buffer(L, 2, cs);
if (nargs == 5)
r = unify(env, cs.size(), cs.data(), to_name_generator(L, 3).mk_child(), to_substitution(L, 4),
unifier_config(to_options(L, 5)));
else if (nargs == 4)
r = unify(env, cs.size(), cs.data(), to_name_generator(L, 3).mk_child(), to_substitution(L, 4));
else
r = unify(env, cs.size(), cs.data(), to_name_generator(L, 3).mk_child());
}
return push_unify_result_seq_it(L, r);
}
void open_unifier(lua_State * L) {
luaL_newmetatable(L, unify_result_seq_mt);
lua_pushvalue(L, -1);
lua_setfield(L, -2, "__index");
setfuncs(L, unify_result_seq_m, 0);
SET_GLOBAL_FUN(unify_result_seq_pred, "is_unify_result_seq");
SET_GLOBAL_FUN(unify_simple, "unify_simple");
SET_GLOBAL_FUN(unify, "unify");
lua_newtable(L);
SET_ENUM("Solved", unify_status::Solved);
SET_ENUM("Failed", unify_status::Failed);
SET_ENUM("Unsupported", unify_status::Unsupported);
lua_setglobal(L, "unify_status");
}
void initialize_unifier() {
g_unifier_max_steps = new name{"unifier", "max_steps"};
g_unifier_computation = new name{"unifier", "computation"};
g_unifier_expensive_classes = new name{"unifier", "expensive_classes"};
g_unifier_conservative = new name{"unifier", "conservative"};
g_unifier_nonchronological = new name{"unifier", "nonchronological"};
register_unsigned_option(*g_unifier_max_steps, LEAN_DEFAULT_UNIFIER_MAX_STEPS, "(unifier) maximum number of steps");
register_bool_option(*g_unifier_computation, LEAN_DEFAULT_UNIFIER_COMPUTATION,
"(unifier) always case-split on reduction/computational steps when solving flex-rigid and delta-delta constraints");
register_bool_option(*g_unifier_expensive_classes, LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES,
"(unifier) use \"full\" higher-order unification when solving class instances");
register_bool_option(*g_unifier_conservative, LEAN_DEFAULT_UNIFIER_CONSERVATIVE,
"(unifier) unfolds only constants marked as reducible, avoid expensive case-splits (it is faster but less complete)");
register_bool_option(*g_unifier_nonchronological, LEAN_DEFAULT_UNIFIER_NONCHRONOLOGICAL,
"(unifier) enable/disable nonchronological backtracking in the unifier (this option is only available for debugging and benchmarking purposes, and running experiments)");
g_dont_care_cnstr = new constraint(mk_eq_cnstr(expr(), expr(), justification()));
g_tmp_prefix = new name(name::mk_internal_unique_name());
}
void finalize_unifier() {
delete g_tmp_prefix;
delete g_dont_care_cnstr;
delete g_unifier_max_steps;
delete g_unifier_computation;
delete g_unifier_expensive_classes;
delete g_unifier_conservative;
delete g_unifier_nonchronological;
}
}