430b75f38f
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
165 lines
No EOL
7.3 KiB
Text
165 lines
No EOL
7.3 KiB
Text
(*
|
||
Nat library full of "holes".
|
||
We provide only the proof skeletons, and let Lean infer the rest.
|
||
*)
|
||
Import kernel.
|
||
|
||
Variable Nat : Type.
|
||
Alias ℕ : Nat.
|
||
|
||
Namespace Nat.
|
||
Builtin numeral.
|
||
|
||
Builtin add : Nat → Nat → Nat.
|
||
Infixl 65 + : add.
|
||
|
||
Builtin mul : Nat → Nat → Nat.
|
||
Infixl 70 * : mul.
|
||
|
||
Builtin le : Nat → Nat → Bool.
|
||
Infix 50 <= : le.
|
||
Infix 50 ≤ : le.
|
||
|
||
Definition ge (a b : Nat) := b ≤ a.
|
||
Infix 50 >= : ge.
|
||
Infix 50 ≥ : ge.
|
||
|
||
Definition lt (a b : Nat) := ¬ (a ≥ b).
|
||
Infix 50 < : lt.
|
||
|
||
Definition gt (a b : Nat) := ¬ (a ≤ b).
|
||
Infix 50 > : gt.
|
||
|
||
Definition id (a : Nat) := a.
|
||
Notation 55 | _ | : id.
|
||
|
||
Axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b
|
||
Axiom PlusZero (a : Nat) : a + 0 = a.
|
||
Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1.
|
||
Axiom MulZero (a : Nat) : a * 0 = 0.
|
||
Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a.
|
||
Axiom Induction {P : Nat → Bool} (Hb : P 0) (iH : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a.
|
||
|
||
Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
|
||
|
||
Theorem ZeroPlus (a : Nat) : 0 + a = a
|
||
:= Induction (show 0 + 0 = 0, Trivial)
|
||
(λ (n : Nat) (iH : 0 + n = n),
|
||
calc 0 + (n + 1) = (0 + n) + 1 : PlusSucc _ _
|
||
... = n + 1 : { iH })
|
||
a.
|
||
|
||
Theorem SuccPlus (a b : Nat) : (a + 1) + b = (a + b) + 1
|
||
:= Induction (calc (a + 1) + 0 = a + 1 : PlusZero _
|
||
... = (a + 0) + 1 : { Symm (PlusZero _) })
|
||
(λ (n : Nat) (iH : (a + 1) + n = (a + n) + 1),
|
||
calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : PlusSucc _ _
|
||
... = ((a + n) + 1) + 1 : { iH }
|
||
... = (a + (n + 1)) + 1 : { Symm (PlusSucc _ _) })
|
||
b.
|
||
|
||
Theorem PlusComm (a b : Nat) : a + b = b + a
|
||
:= Induction (calc a + 0 = a : PlusZero a
|
||
... = 0 + a : Symm (ZeroPlus a))
|
||
(λ (n : Nat) (iH : a + n = n + a),
|
||
calc a + (n + 1) = (a + n) + 1 : PlusSucc _ _
|
||
... = (n + a) + 1 : { iH }
|
||
... = (n + 1) + a : Symm (SuccPlus _ _))
|
||
b.
|
||
|
||
Theorem PlusAssoc (a b c : Nat) : a + (b + c) = (a + b) + c
|
||
:= Induction (calc 0 + (b + c) = b + c : ZeroPlus _
|
||
... = (0 + b) + c : { Symm (ZeroPlus _) })
|
||
(λ (n : Nat) (iH : n + (b + c) = (n + b) + c),
|
||
calc (n + 1) + (b + c) = (n + (b + c)) + 1 : SuccPlus _ _
|
||
... = ((n + b) + c) + 1 : { iH }
|
||
... = ((n + b) + 1) + c : Symm (SuccPlus _ _)
|
||
... = ((n + 1) + b) + c : { Symm (SuccPlus _ _) })
|
||
a.
|
||
|
||
Theorem ZeroMul (a : Nat) : 0 * a = 0
|
||
:= Induction (show 0 * 0 = 0, Trivial)
|
||
(λ (n : Nat) (iH : 0 * n = 0),
|
||
calc 0 * (n + 1) = (0 * n) + 0 : MulSucc _ _
|
||
... = 0 + 0 : { iH }
|
||
... = 0 : Trivial)
|
||
a.
|
||
|
||
Theorem SuccMul (a b : Nat) : (a + 1) * b = a * b + b
|
||
:= Induction (calc (a + 1) * 0 = 0 : MulZero _
|
||
... = a * 0 : Symm (MulZero _)
|
||
... = a * 0 + 0 : Symm (PlusZero _))
|
||
(λ (n : Nat) (iH : (a + 1) * n = a * n + n),
|
||
calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : MulSucc _ _
|
||
... = a * n + n + (a + 1) : { iH }
|
||
... = a * n + n + a + 1 : PlusAssoc _ _ _
|
||
... = a * n + (n + a) + 1 : { Symm (PlusAssoc _ _ _) }
|
||
... = a * n + (a + n) + 1 : { PlusComm _ _ }
|
||
... = a * n + a + n + 1 : { PlusAssoc _ _ _ }
|
||
... = a * (n + 1) + n + 1 : { Symm (MulSucc _ _) }
|
||
... = a * (n + 1) + (n + 1) : Symm (PlusAssoc _ _ _))
|
||
b.
|
||
|
||
Theorem OneMul (a : Nat) : 1 * a = a
|
||
:= Induction (show 1 * 0 = 0, Trivial)
|
||
(λ (n : Nat) (iH : 1 * n = n),
|
||
calc 1 * (n + 1) = 1 * n + 1 : MulSucc _ _
|
||
... = n + 1 : { iH })
|
||
a.
|
||
|
||
Theorem MulOne (a : Nat) : a * 1 = a
|
||
:= Induction (show 0 * 1 = 0, Trivial)
|
||
(λ (n : Nat) (iH : n * 1 = n),
|
||
calc (n + 1) * 1 = n * 1 + 1 : SuccMul _ _
|
||
... = n + 1 : { iH })
|
||
a.
|
||
|
||
Theorem MulComm (a b : Nat) : a * b = b * a
|
||
:= Induction (calc a * 0 = 0 : MulZero a
|
||
... = 0 * a : Symm (ZeroMul a))
|
||
(λ (n : Nat) (iH : a * n = n * a),
|
||
calc a * (n + 1) = a * n + a : MulSucc _ _
|
||
... = n * a + a : { iH }
|
||
... = (n + 1) * a : Symm (SuccMul _ _))
|
||
b.
|
||
|
||
|
||
Theorem Distribute (a b c : Nat) : a * (b + c) = a * b + a * c
|
||
:= Induction (calc 0 * (b + c) = 0 : ZeroMul _
|
||
... = 0 + 0 : Trivial
|
||
... = 0 * b + 0 : { Symm (ZeroMul _) }
|
||
... = 0 * b + 0 * c : { Symm (ZeroMul _) })
|
||
(λ (n : Nat) (iH : n * (b + c) = n * b + n * c),
|
||
calc (n + 1) * (b + c) = n * (b + c) + (b + c) : SuccMul _ _
|
||
... = n * b + n * c + (b + c) : { iH }
|
||
... = n * b + n * c + b + c : PlusAssoc _ _ _
|
||
... = n * b + (n * c + b) + c : { Symm (PlusAssoc _ _ _) }
|
||
... = n * b + (b + n * c) + c : { PlusComm _ _ }
|
||
... = n * b + b + n * c + c : { PlusAssoc _ _ _ }
|
||
... = (n + 1) * b + n * c + c : { Symm (SuccMul _ _) }
|
||
... = (n + 1) * b + (n * c + c) : Symm (PlusAssoc _ _ _)
|
||
... = (n + 1) * b + (n + 1) * c : { Symm (SuccMul _ _) })
|
||
a.
|
||
|
||
Theorem Distribute2 (a b c : Nat) : (a + b) * c = a * c + b * c
|
||
:= calc (a + b) * c = c * (a + b) : MulComm _ _
|
||
... = c * a + c * b : Distribute _ _ _
|
||
... = a * c + c * b : { MulComm _ _ }
|
||
... = a * c + b * c : { MulComm _ _}.
|
||
|
||
Theorem MulAssoc (a b c : Nat) : a * (b * c) = a * b * c
|
||
:= Induction (calc 0 * (b * c) = 0 : ZeroMul _
|
||
... = 0 * c : Symm (ZeroMul _)
|
||
... = (0 * b) * c : { Symm (ZeroMul _) })
|
||
(λ (n : Nat) (iH : n * (b * c) = n * b * c),
|
||
calc (n + 1) * (b * c) = n * (b * c) + (b * c) : SuccMul _ _
|
||
... = n * b * c + (b * c) : { iH }
|
||
... = (n * b + b) * c : Symm (Distribute2 _ _ _)
|
||
... = (n + 1) * b * c : { Symm (SuccMul _ _) })
|
||
a.
|
||
|
||
SetOpaque ge true.
|
||
SetOpaque lt true.
|
||
SetOpaque gt true.
|
||
SetOpaque id true.
|
||
EndNamespace. |