lean2/library/logic/axioms/classical.lean

59 lines
1.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: logic.axioms.classical
Author: Leonardo de Moura
-/
import logic.connectives logic.quantifiers logic.cast algebra.relation
open eq.ops
axiom prop_complete (a : Prop) : a = true a = false
definition eq_true_or_eq_false := prop_complete
theorem cases (P : Prop → Prop) (H1 : P true) (H2 : P false) (a : Prop) : P a :=
or.elim (prop_complete a)
(assume Ht : a = true, Ht⁻¹ ▸ H1)
(assume Hf : a = false, Hf⁻¹ ▸ H2)
theorem cases_on (a : Prop) {P : Prop → Prop} (H1 : P true) (H2 : P false) : P a :=
cases P H1 H2 a
-- this supercedes the em in decidable
theorem em (a : Prop) : a ¬a :=
or.elim (prop_complete a)
(assume Ht : a = true, or.inl (of_eq_true Ht))
(assume Hf : a = false, or.inr (not_of_eq_false Hf))
theorem eq_false_or_eq_true (a : Prop) : a = false a = true :=
cases (λ x, x = false x = true)
(or.inr rfl)
(or.inl rfl)
a
theorem propext {a b : Prop} (Hab : a → b) (Hba : b → a) : a = b :=
or.elim (prop_complete a)
(assume Hat, or.elim (prop_complete b)
(assume Hbt, Hat ⬝ Hbt⁻¹)
(assume Hbf, false.elim (Hbf ▸ (Hab (of_eq_true Hat)))))
(assume Haf, or.elim (prop_complete b)
(assume Hbt, false.elim (Haf ▸ (Hba (of_eq_true Hbt))))
(assume Hbf, Haf ⬝ Hbf⁻¹))
theorem eq.of_iff {a b : Prop} (H : a ↔ b) : a = b :=
iff.elim (assume H1 H2, propext H1 H2) H
theorem iff_eq_eq {a b : Prop} : (a ↔ b) = (a = b) :=
propext
(assume H, eq.of_iff H)
(assume H, iff.of_eq H)
open relation
theorem iff_congruence [instance] (P : Prop → Prop) : is_congruence iff iff P :=
is_congruence.mk
(take (a b : Prop),
assume H : a ↔ b,
show P a ↔ P b, from iff.of_eq (eq.of_iff H ▸ eq.refl (P a)))