lean2/library/logic/core/quantifiers.lean
Leonardo de Moura e51c4ad2e9 feat(frontends/lean): rename 'using' command to 'open'
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-09-03 16:00:38 -07:00

82 lines
3.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Leonardo de Moura, Jeremy Avigad
import .connectives ..classes.nonempty
open inhabited nonempty
inductive Exists {A : Type} (P : A → Prop) : Prop :=
exists_intro : ∀ (a : A), P a → Exists P
notation `exists` binders `,` r:(scoped P, Exists P) := r
notation `∃` binders `,` r:(scoped P, Exists P) := r
theorem exists_elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B :=
Exists_rec H2 H1
theorem exists_not_forall {A : Type} {p : A → Prop} (H : ∃x, p x) : ¬∀x, ¬p x :=
assume H1 : ∀x, ¬p x,
obtain (w : A) (Hw : p w), from H,
absurd Hw (H1 w)
theorem forall_not_exists {A : Type} {p : A → Prop} (H2 : ∀x, p x) : ¬∃x, ¬p x :=
assume H1 : ∃x, ¬p x,
obtain (w : A) (Hw : ¬p w), from H1,
absurd (H2 w) Hw
definition exists_unique {A : Type} (p : A → Prop) :=
∃x, p x ∧ ∀y, y ≠ x → ¬p y
notation `∃!` binders `,` r:(scoped P, exists_unique P) := r
theorem exists_unique_intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, y ≠ w → ¬p y) : ∃!x, p x :=
exists_intro w (and_intro H1 H2)
theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop}
(H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, y ≠ x → ¬p y) → b) : b :=
obtain w Hw, from H2,
H1 w (and_elim_left Hw) (and_elim_right Hw)
theorem forall_congr {A : Type} {φ ψ : A → Prop} (H : ∀x, φ x ↔ ψ x) : (∀x, φ x) ↔ (∀x, ψ x) :=
iff_intro
(assume Hl, take x, iff_elim_left (H x) (Hl x))
(assume Hr, take x, iff_elim_right (H x) (Hr x))
theorem exists_congr {A : Type} {φ ψ : A → Prop} (H : ∀x, φ x ↔ ψ x) : (∃x, φ x) ↔ (∃x, ψ x) :=
iff_intro
(assume Hex, obtain w Pw, from Hex,
exists_intro w (iff_elim_left (H w) Pw))
(assume Hex, obtain w Qw, from Hex,
exists_intro w (iff_elim_right (H w) Qw))
theorem forall_true_iff_true (A : Type) : (∀x : A, true) ↔ true :=
iff_intro (assume H, trivial) (assume H, take x, trivial)
theorem forall_p_iff_p (A : Type) {H : inhabited A} (p : Prop) : (∀x : A, p) ↔ p :=
iff_intro (assume Hl, inhabited_destruct H (take x, Hl x)) (assume Hr, take x, Hr)
theorem exists_p_iff_p (A : Type) {H : inhabited A} (p : Prop) : (∃x : A, p) ↔ p :=
iff_intro
(assume Hl, obtain a Hp, from Hl, Hp)
(assume Hr, inhabited_destruct H (take a, exists_intro a Hr))
theorem forall_and_distribute {A : Type} (φ ψ : A → Prop) : (∀x, φ x ∧ ψ x) ↔ (∀x, φ x) ∧ (∀x, ψ x) :=
iff_intro
(assume H, and_intro (take x, and_elim_left (H x)) (take x, and_elim_right (H x)))
(assume H, take x, and_intro (and_elim_left H x) (and_elim_right H x))
theorem exists_or_distribute {A : Type} (φ ψ : A → Prop) : (∃x, φ x ψ x) ↔ (∃x, φ x) (∃x, ψ x) :=
iff_intro
(assume H, obtain (w : A) (Hw : φ w ψ w), from H,
or_elim Hw
(assume Hw1 : φ w, or_inl (exists_intro w Hw1))
(assume Hw2 : ψ w, or_inr (exists_intro w Hw2)))
(assume H, or_elim H
(assume H1, obtain (w : A) (Hw : φ w), from H1,
exists_intro w (or_inl Hw))
(assume H2, obtain (w : A) (Hw : ψ w), from H2,
exists_intro w (or_inr Hw)))
theorem exists_imp_nonempty {A : Type} {P : A → Prop} (H : ∃x, P x) : nonempty A :=
obtain w Hw, from H, nonempty_intro w