lean2/library/data/int/div.lean

239 lines
10 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.int.div
Author: Jeremy Avigad
Definitions and properties of div, mod, gcd, lcm, coprime. Following the SSReflect library
(and the SMT lib standard), we define a mod b so that 0 ≤ a mod b < |b| when b ≠ 0.
-/
import data.int.order data.nat.div
open [coercions] [reduce-hints] nat
open [declarations] nat (succ)
open eq.ops
notation `` := nat
set_option pp.beta true
namespace int
/- definitions -/
definition divide (a b : ) : :=
sign b *
(match a with
of_nat m := #nat m div (nat_abs b),
-[ m +1] := -[ (#nat m div (nat_abs b)) +1]
end)
notation a div b := divide a b
definition modulo (a b : ) : := a - a div b * b
notation a mod b := modulo a b
/- div -/
theorem of_nat_div_of_nat (m n : nat) : m div n = of_nat (#nat m div n) :=
nat.cases_on n
(by rewrite [↑divide, sign_zero, zero_mul, nat.div_zero])
(take n, by rewrite [↑divide, sign_of_succ, one_mul])
theorem neg_succ_of_nat_div (m : nat) {b : } (H : b > 0) :
-[m +1] div b = -(m div b + 1) :=
calc
-[m +1] div b = sign b * _ : rfl
... = -[(#nat m div (nat_abs b)) +1] : by rewrite [(sign_of_pos H), one_mul]
... = -(m div b + 1) : by rewrite [↑divide, (sign_of_pos H), one_mul]
theorem div_neg (a b : ) : a div -b = -(a div b) :=
calc
a div -b = sign (-b) * _ : rfl
... = -(sign b) * _ : sign_neg
... = -(sign b * _) : neg_mul_eq_neg_mul
... = -(sign b * _) : nat_abs_neg
... = -(a div b) : rfl
theorem zero_div (b : ) : 0 div b = 0 :=
calc
0 div b = sign b * (#nat 0 div (nat_abs b)) : rfl
... = sign b * 0 : nat.zero_div
... = 0 : mul_zero
theorem div_zero (a : ) : a div 0 = 0 :=
by rewrite [↑divide, sign_zero, zero_mul]
theorem eq_div_mul_add_mod {a b : } : a = a div b * b + a mod b :=
!add.comm ▸ eq_add_of_sub_eq rfl
/- mod -/
theorem of_nat_mod_of_nat (m n : nat) : m mod n = (#nat m mod n) :=
have H : m = (#nat m mod n) + m div n * n, from calc
m = of_nat (#nat m div n * n + m mod n) : nat.eq_div_mul_add_mod
... = (#nat m div n) * n + (#nat m mod n) : rfl
... = m div n * n + (#nat m mod n) : of_nat_div_of_nat
... = (#nat m mod n) + m div n * n : add.comm,
calc
m mod n = m - m div n * n : rfl
... = (#nat m mod n) : sub_eq_of_eq_add H
theorem neg_succ_of_nat_mod (m : ) {b : } (bpos : b > 0) :
-[m +1] mod b = b - 1 - m mod b :=
calc
-[m +1] mod b = -(m + 1) - -[m +1] div b * b : rfl
... = -(m + 1) - -(m div b + 1) * b : neg_succ_of_nat_div _ bpos
... = -m + -1 + (b + m div b * b) :
by rewrite [neg_add, -neg_mul_eq_neg_mul, sub_neg_eq_add, mul.right_distrib,
one_mul, (add.comm b)]
... = b + -1 + (-m + m div b * b) :
by rewrite [-*add.assoc, (add.comm (-m)), (add.right_comm (-1)), (add.comm b)]
... = b - 1 - m mod b :
by rewrite [↑modulo, *sub_eq_add_neg, neg_add, neg_neg]
theorem mod_neg (a b : ) : a mod -b = a mod b :=
calc
a mod -b = a - (a div -b) * -b : rfl
... = a - -(a div b) * -b : div_neg
... = a - a div b * b : neg_mul_neg
... = a mod b : rfl
theorem mod_abs (a b : ) : a mod |b| = a mod b :=
abs.by_cases rfl !mod_neg
theorem zero_mod (b : ) : 0 mod b = 0 :=
by rewrite [↑modulo, zero_div, zero_mul, sub_zero]
theorem mod_zero (a : ) : a mod 0 = a :=
by rewrite [↑modulo, mul_zero, sub_zero]
private lemma of_nat_mod_abs (m : ) (b : ) : m mod |b| = (#nat m mod (nat_abs b)) :=
calc
m mod |b| = m mod (nat_abs b) : of_nat_nat_abs
... = (#nat m mod (nat_abs b)) : of_nat_mod_of_nat
private lemma of_nat_mod_abs_lt (m : ) {b : } (H : b ≠ 0) : m mod |b| < |b| :=
have H1 : |b| > 0, from abs_pos_of_ne_zero H,
have H2 : (#nat nat_abs b > 0), from lt_of_of_nat_lt_of_nat (!of_nat_nat_abs⁻¹ ▸ H1),
calc
m mod |b| = (#nat m mod (nat_abs b)) : of_nat_mod_abs m b
... < nat_abs b : of_nat_lt_of_nat (nat.mod_lt H2)
... = |b| : of_nat_nat_abs _
theorem mod_nonneg (a : ) {b : } (H : b ≠ 0) : a mod b ≥ 0 :=
have H1 : |b| > 0, from abs_pos_of_ne_zero H,
have H2 : a mod |b| ≥ 0, from
int.cases_on a
(take m, (of_nat_mod_abs m b)⁻¹ ▸ !of_nat_nonneg)
(take m,
have H3 : 1 + m mod |b| ≤ |b|, from (!add.comm ▸ add_one_le_of_lt (of_nat_mod_abs_lt m H)),
calc
-[ m +1] mod |b| = |b| - 1 - m mod |b| : neg_succ_of_nat_mod _ H1
... = |b| - (1 + m mod |b|) : by rewrite [*sub_eq_add_neg, neg_add, add.assoc]
... ≥ 0 : iff.mp' !sub_nonneg_iff_le H3),
!mod_abs ▸ H2
theorem mod_lt (a : ) {b : } (H : b ≠ 0) : a mod b < |b| :=
have H1 : |b| > 0, from abs_pos_of_ne_zero H,
have H2 : a mod |b| < |b|, from
int.cases_on a
(take m, of_nat_mod_abs_lt m H)
(take m,
have H3 : |b| ≠ 0, from assume H', H (eq_zero_of_abs_eq_zero H'),
have H4 : 1 + m mod |b| > 0, from add_pos_of_pos_of_nonneg dec_trivial (mod_nonneg _ H3),
calc
-[ m +1] mod |b| = |b| - 1 - m mod |b| : neg_succ_of_nat_mod _ H1
... = |b| - (1 + m mod |b|) : by rewrite [*sub_eq_add_neg, neg_add, add.assoc]
... < |b| : sub_lt_self _ H4),
!mod_abs ▸ H2
/- both div and mod -/
private theorem add_mul_div_self_right_aux1 {a : } {k : } (n : ) (H1 : a ≥ 0) (H2 : #nat k > 0) :
(a + n * k) div k = a div k + n :=
obtain m (Hm : a = of_nat m), from exists_eq_of_nat H1,
Hm⁻¹ ▸ (calc
(m + n * k) div k = (#nat (m + n * k)) div k : rfl
... = (#nat (m + n * k) div k) : of_nat_div_of_nat
... = (#nat m div k + n) : !nat.add_mul_div_self_right H2
... = (#nat m div k) + n : rfl
... = m div k + n : of_nat_div_of_nat)
private theorem add_mul_div_self_right_aux2 {a : } {k : } (n : ) (H1 : a < 0) (H2 : #nat k > 0) :
(a + n * k) div k = a div k + n :=
obtain m (Hm : a = -[m +1]), from exists_eq_neg_succ_of_nat H1,
or.elim (nat.lt_or_ge m (#nat n * k))
(assume m_lt_nk : #nat m < n * k,
have H3 : #nat (m + 1 ≤ n * k), from nat.succ_le_of_lt m_lt_nk,
have H4 : #nat m div k + 1 ≤ n,
from nat.succ_le_of_lt (nat.div_lt_of_lt_mul (!nat.mul.comm ▸ m_lt_nk)),
Hm⁻¹ ▸ (calc
(-[m +1] + n * k) div k = (n * k - (m + 1)) div k : by rewrite [add.comm, neg_succ_of_nat_eq]
... = ((#nat n * k) - (#nat m + 1)) div k : rfl
... = (#nat n * k - (m + 1)) div k : {of_nat_sub_of_nat H3}
... = #nat (n * k - (m + 1)) div k : of_nat_div_of_nat
... = #nat (k * n - (m + 1)) div k : nat.mul.comm
... = #nat n - m div k - 1 :
nat.mul_sub_div_of_lt (!nat.mul.comm ▸ m_lt_nk)
... = #nat n - (m div k + 1) : nat.sub_sub
... = n - (#nat m div k + 1) : of_nat_sub_of_nat H4
... = -(m div k + 1) + n :
by rewrite [add.comm, -sub_eq_add_neg, -of_nat_add_of_nat, of_nat_div_of_nat]
... = -[m +1] div k + n :
neg_succ_of_nat_div m (of_nat_lt_of_nat H2)))
(assume nk_le_m : #nat n * k ≤ m,
eq.symm (Hm⁻¹ ▸ (calc
-[m +1] div k + n = -(m div k + 1) + n :
neg_succ_of_nat_div m (of_nat_lt_of_nat H2)
... = -((#nat m div k) + 1) + n : of_nat_div_of_nat
... = -((#nat (m - n * k + n * k) div k) + 1) + n : nat.sub_add_cancel nk_le_m
... = -((#nat (m - n * k) div k + n) + 1) + n : nat.add_mul_div_self_right H2
... = -((#nat m - n * k) div k + 1) :
by rewrite [-of_nat_add_of_nat, *neg_add, add.right_comm, neg_add_cancel_right,
of_nat_div_of_nat]
... = -[(#nat m - n * k) +1] div k :
neg_succ_of_nat_div _ (of_nat_lt_of_nat H2)
... = -((#nat m - n * k) + 1) div k : rfl
... = -(m - (#nat n * k) + 1) div k : of_nat_sub_of_nat nk_le_m
... = (-(m + 1) + n * k) div k :
by rewrite [sub_eq_add_neg, -*add.assoc, *neg_add, neg_neg, add.right_comm]
... = (-[m +1] + n * k) div k : rfl)))
private theorem add_mul_div_self_right_aux3 (a : ) {b c : } (H1 : b ≥ 0) (H2 : c > 0) :
(a + b * c) div c = a div c + b :=
obtain n (Hn : b = of_nat n), from exists_eq_of_nat H1,
obtain k (Hk : c = of_nat k), from exists_eq_of_nat (le_of_lt H2),
have knz : k ≠ 0, from assume kz, !lt.irrefl (kz ▸ Hk ▸ H2),
have kgt0 : (#nat k > 0), from nat.pos_of_ne_zero knz,
have H3 : (a + n * k) div k = a div k + n, from
or.elim (lt_or_ge a 0)
(assume Ha : a < 0, add_mul_div_self_right_aux2 _ Ha kgt0)
(assume Ha : a ≥ 0, add_mul_div_self_right_aux1 _ Ha kgt0),
Hn⁻¹ ▸ Hk⁻¹ ▸ H3
private theorem add_mul_div_self_right_aux4 (a b : ) {c : } (H : c > 0) :
(a + b * c) div c = a div c + b :=
or.elim (le.total 0 b)
(assume H1 : 0 ≤ b, add_mul_div_self_right_aux3 _ H1 H)
(assume H1 : 0 ≥ b,
eq.symm (calc
a div c + b = (a + b * c + -b * c) div c + b :
by rewrite [-neg_mul_eq_neg_mul, add_neg_cancel_right]
... = (a + b * c) div c + - b + b :
add_mul_div_self_right_aux3 _ (neg_nonneg_of_nonpos H1) H
... = (a + b * c) div c : neg_add_cancel_right))
theorem add_mul_div_self_right (a b : ) {c : } (H : c ≠ 0) : (a + b * c) div c = a div c + b :=
lt.by_cases
(assume H1 : 0 < c, !add_mul_div_self_right_aux4 H1)
(assume H1 : 0 = c, absurd H1⁻¹ H)
(assume H1 : 0 > c,
have H2 : -c > 0, from neg_pos_of_neg H1,
calc
(a + b * c) div c = - ((a + -b * -c) div -c) : by rewrite [div_neg, neg_mul_neg, neg_neg]
... = -(a div -c + -b) : !add_mul_div_self_right_aux4 H2
... = a div c + b : by rewrite [div_neg, neg_add, *neg_neg])
end int