lean2/library/data/nat/order.lean
Floris van Doorn 52dd6cf90b feat(hott): Port files from other repositories to the HoTT library.
This commit adds truncated 2-quotients, groupoid quotients, Eilenberg MacLane spaces, chain complexes, the long exact sequence of homotopy groups, the Freudenthal Suspension Theorem, Whitehead's principle, and the computation of homotopy groups of almost all spheres which are known in HoTT.
2016-05-06 14:27:27 -07:00

547 lines
20 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad
The order relation on the natural numbers.
-/
import .basic algebra.ordered_ring
open eq.ops
namespace nat
/- lt and le -/
protected theorem le_of_lt_or_eq {m n : } (H : m < n m = n) : m ≤ n :=
nat.le_of_eq_or_lt (or.swap H)
protected theorem lt_or_eq_of_le {m n : } (H : m ≤ n) : m < n m = n :=
or.swap (nat.eq_or_lt_of_le H)
protected theorem le_iff_lt_or_eq (m n : ) : m ≤ n ↔ m < n m = n :=
iff.intro nat.lt_or_eq_of_le nat.le_of_lt_or_eq
protected theorem lt_of_le_and_ne {m n : } (H1 : m ≤ n) : m ≠ n → m < n :=
or_resolve_right (nat.eq_or_lt_of_le H1)
protected theorem lt_iff_le_and_ne (m n : ) : m < n ↔ m ≤ n ∧ m ≠ n :=
iff.intro
(take H, and.intro (nat.le_of_lt H) (take H1, !nat.lt_irrefl (H1 ▸ H)))
(and.rec nat.lt_of_le_and_ne)
theorem le_add_right (n k : ) : n ≤ n + k :=
nat.rec !nat.le_refl (λ k, le_succ_of_le) k
theorem le_add_left (n m : ): n ≤ m + n :=
!add.comm ▸ !le_add_right
theorem le.intro {n m k : } (h : n + k = m) : n ≤ m :=
h ▸ !le_add_right
theorem le.elim {n m : } : n ≤ m → ∃ k, n + k = m :=
le.rec (exists.intro 0 rfl) (λm h, Exists.rec
(λ k H, exists.intro (succ k) (H ▸ rfl)))
protected theorem le_total {m n : } : m ≤ n n ≤ m :=
or.imp_left nat.le_of_lt !nat.lt_or_ge
/- addition -/
protected theorem add_le_add_left {n m : } (H : n ≤ m) (k : ) : k + n ≤ k + m :=
obtain l Hl, from le.elim H, le.intro (Hl ▸ !add.assoc)
protected theorem add_le_add_right {n m : } (H : n ≤ m) (k : ) : n + k ≤ m + k :=
!add.comm ▸ !add.comm ▸ nat.add_le_add_left H k
protected theorem le_of_add_le_add_left {k n m : } (H : k + n ≤ k + m) : n ≤ m :=
obtain l Hl, from le.elim H, le.intro (nat.add_left_cancel (!add.assoc⁻¹ ⬝ Hl))
protected theorem lt_of_add_lt_add_left {k n m : } (H : k + n < k + m) : n < m :=
let H' := nat.le_of_lt H in
nat.lt_of_le_and_ne (nat.le_of_add_le_add_left H') (assume Heq, !nat.lt_irrefl (Heq ▸ H))
protected theorem add_lt_add_left {n m : } (H : n < m) (k : ) : k + n < k + m :=
lt_of_succ_le (!add_succ ▸ nat.add_le_add_left (succ_le_of_lt H) k)
protected theorem add_lt_add_right {n m : } (H : n < m) (k : ) : n + k < m + k :=
!add.comm ▸ !add.comm ▸ nat.add_lt_add_left H k
protected theorem lt_add_of_pos_right {n k : } (H : k > 0) : n < n + k :=
!add_zero ▸ nat.add_lt_add_left H n
/- multiplication -/
theorem mul_le_mul_left {n m : } (k : ) (H : n ≤ m) : k * n ≤ k * m :=
obtain (l : ) (Hl : n + l = m), from le.elim H,
have k * n + k * l = k * m, by rewrite [-left_distrib, Hl],
le.intro this
theorem mul_le_mul_right {n m : } (k : ) (H : n ≤ m) : n * k ≤ m * k :=
!mul.comm ▸ !mul.comm ▸ !mul_le_mul_left H
protected theorem mul_le_mul {n m k l : } (H1 : n ≤ k) (H2 : m ≤ l) : n * m ≤ k * l :=
nat.le_trans (!nat.mul_le_mul_right H1) (!nat.mul_le_mul_left H2)
protected theorem mul_lt_mul_of_pos_left {n m k : } (H : n < m) (Hk : k > 0) : k * n < k * m :=
nat.lt_of_lt_of_le (nat.lt_add_of_pos_right Hk) (!mul_succ ▸ nat.mul_le_mul_left k (succ_le_of_lt H))
protected theorem mul_lt_mul_of_pos_right {n m k : } (H : n < m) (Hk : k > 0) : n * k < m * k :=
!mul.comm ▸ !mul.comm ▸ nat.mul_lt_mul_of_pos_left H Hk
/- nat is an instance of a linearly ordered semiring and a lattice -/
protected definition decidable_linear_ordered_semiring [trans_instance] :
decidable_linear_ordered_semiring nat :=
⦃ decidable_linear_ordered_semiring, nat.comm_semiring,
add_left_cancel := @nat.add_left_cancel,
add_right_cancel := @nat.add_right_cancel,
lt := nat.lt,
le := nat.le,
le_refl := nat.le_refl,
le_trans := @nat.le_trans,
le_antisymm := @nat.le_antisymm,
le_total := @nat.le_total,
le_iff_lt_or_eq := @nat.le_iff_lt_or_eq,
le_of_lt := @nat.le_of_lt,
lt_irrefl := @nat.lt_irrefl,
lt_of_lt_of_le := @nat.lt_of_lt_of_le,
lt_of_le_of_lt := @nat.lt_of_le_of_lt,
lt_of_add_lt_add_left := @nat.lt_of_add_lt_add_left,
add_lt_add_left := @nat.add_lt_add_left,
add_le_add_left := @nat.add_le_add_left,
le_of_add_le_add_left := @nat.le_of_add_le_add_left,
zero_lt_one := zero_lt_succ 0,
mul_le_mul_of_nonneg_left := (take a b c H1 H2, nat.mul_le_mul_left c H1),
mul_le_mul_of_nonneg_right := (take a b c H1 H2, nat.mul_le_mul_right c H1),
mul_lt_mul_of_pos_left := @nat.mul_lt_mul_of_pos_left,
mul_lt_mul_of_pos_right := @nat.mul_lt_mul_of_pos_right,
decidable_lt := nat.decidable_lt ⦄
definition nat_has_dvd [instance] [priority nat.prio] : has_dvd nat :=
has_dvd.mk has_dvd.dvd
theorem add_pos_left {a : } (H : 0 < a) (b : ) : 0 < a + b :=
@add_pos_of_pos_of_nonneg _ _ a b H !zero_le
theorem add_pos_right {a : } (H : 0 < a) (b : ) : 0 < b + a :=
by rewrite add.comm; apply add_pos_left H b
theorem add_eq_zero_iff_eq_zero_and_eq_zero {a b : } :
a + b = 0 ↔ a = 0 ∧ b = 0 :=
@add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg _ _ a b !zero_le !zero_le
theorem le_add_of_le_left {a b c : } (H : b ≤ c) : b ≤ a + c :=
@le_add_of_nonneg_of_le _ _ a b c !zero_le H
theorem le_add_of_le_right {a b c : } (H : b ≤ c) : b ≤ c + a :=
@le_add_of_le_of_nonneg _ _ a b c H !zero_le
theorem lt_add_of_lt_left {b c : } (H : b < c) (a : ) : b < a + c :=
@lt_add_of_nonneg_of_lt _ _ a b c !zero_le H
theorem lt_add_of_lt_right {b c : } (H : b < c) (a : ) : b < c + a :=
@lt_add_of_lt_of_nonneg _ _ a b c H !zero_le
theorem lt_of_mul_lt_mul_left {a b c : } (H : c * a < c * b) : a < b :=
@lt_of_mul_lt_mul_left _ _ a b c H !zero_le
theorem lt_of_mul_lt_mul_right {a b c : } (H : a * c < b * c) : a < b :=
@lt_of_mul_lt_mul_right _ _ a b c H !zero_le
theorem pos_of_mul_pos_left {a b : } (H : 0 < a * b) : 0 < b :=
@pos_of_mul_pos_left _ _ a b H !zero_le
theorem pos_of_mul_pos_right {a b : } (H : 0 < a * b) : 0 < a :=
@pos_of_mul_pos_right _ _ a b H !zero_le
theorem zero_le_one : (0:nat) ≤ 1 :=
dec_trivial
/- properties specific to nat -/
theorem lt_intro {n m k : } (H : succ n + k = m) : n < m :=
lt_of_succ_le (le.intro H)
theorem lt_elim {n m : } (H : n < m) : ∃k, succ n + k = m :=
le.elim (succ_le_of_lt H)
theorem lt_add_succ (n m : ) : n < n + succ m :=
lt_intro !succ_add_eq_succ_add
theorem eq_zero_of_le_zero {n : } (H : n ≤ 0) : n = 0 :=
obtain (k : ) (Hk : n + k = 0), from le.elim H,
eq_zero_of_add_eq_zero_right Hk
/- succ and pred -/
theorem le_of_lt_succ {m n : nat} : m < succ n → m ≤ n :=
le_of_succ_le_succ
theorem lt_iff_succ_le (m n : nat) : m < n ↔ succ m ≤ n :=
iff.rfl
theorem lt_succ_iff_le (m n : nat) : m < succ n ↔ m ≤ n :=
iff.intro le_of_lt_succ lt_succ_of_le
theorem self_le_succ (n : ) : n ≤ succ n :=
le.intro !add_one
theorem succ_le_or_eq_of_le {n m : } : n ≤ m → succ n ≤ m n = m :=
lt_or_eq_of_le
theorem pred_le_of_le_succ {n m : } : n ≤ succ m → pred n ≤ m :=
pred_le_pred
theorem succ_le_of_le_pred {n m : } : succ n ≤ m → n ≤ pred m :=
pred_le_pred
theorem pred_le_pred_of_le {n m : } : n ≤ m → pred n ≤ pred m :=
pred_le_pred
theorem pre_lt_of_lt {n m : } : n < m → pred n < m :=
lt_of_le_of_lt !pred_le
theorem lt_of_pred_lt_pred {n m : } (H : pred n < pred m) : n < m :=
lt_of_not_ge
(suppose m ≤ n,
not_lt_of_ge (pred_le_pred_of_le this) H)
theorem le_or_eq_succ_of_le_succ {n m : } (H : n ≤ succ m) : n ≤ m n = succ m :=
or.imp_left le_of_succ_le_succ (succ_le_or_eq_of_le H)
theorem le_pred_self (n : ) : pred n ≤ n :=
!pred_le
theorem succ_pos (n : ) : 0 < succ n :=
!zero_lt_succ
theorem succ_pred_of_pos {n : } (H : n > 0) : succ (pred n) = n :=
(or_resolve_right (eq_zero_or_eq_succ_pred n) (ne.symm (ne_of_lt H)))⁻¹
theorem exists_eq_succ_of_lt {n : } : Π {m : }, n < m → ∃k, m = succ k
| 0 H := absurd H !not_lt_zero
| (succ k) H := exists.intro k rfl
theorem lt_succ_self (n : ) : n < succ n :=
lt.base n
lemma lt_succ_of_lt {i j : nat} : i < j → i < succ j :=
assume Plt, lt.trans Plt (self_lt_succ j)
lemma one_le_succ (n : ) : 1 ≤ succ n :=
nat.succ_le_succ !zero_le
lemma two_le_succ_succ (n : ) : 2 ≤ succ (succ n) :=
nat.succ_le_succ !one_le_succ
/- increasing and decreasing functions -/
section
variables {A : Type} [strict_order A] {f : → A}
theorem strictly_increasing_of_forall_lt_succ (H : ∀ i, f i < f (succ i)) : strictly_increasing f :=
take i j,
nat.induction_on j
(suppose i < 0, absurd this !not_lt_zero)
(take j', assume ih, suppose i < succ j',
or.elim (lt_or_eq_of_le (le_of_lt_succ this))
(suppose i < j', lt.trans (ih this) (H j'))
(suppose i = j', by rewrite this; apply H))
theorem strictly_decreasing_of_forall_gt_succ (H : ∀ i, f i > f (succ i)) : strictly_decreasing f :=
take i j,
nat.induction_on j
(suppose i < 0, absurd this !not_lt_zero)
(take j', assume ih, suppose i < succ j',
or.elim (lt_or_eq_of_le (le_of_lt_succ this))
(suppose i < j', lt.trans (H j') (ih this))
(suppose i = j', by rewrite this; apply H))
end
section
variables {A : Type} [weak_order A] {f : → A}
theorem nondecreasing_of_forall_le_succ (H : ∀ i, f i ≤ f (succ i)) : nondecreasing f :=
take i j,
nat.induction_on j
(suppose i ≤ 0, have i = 0, from eq_zero_of_le_zero this, by rewrite this; apply le.refl)
(take j', assume ih, suppose i ≤ succ j',
or.elim (le_or_eq_succ_of_le_succ this)
(suppose i ≤ j', le.trans (ih this) (H j'))
(suppose i = succ j', by rewrite this; apply le.refl))
theorem nonincreasing_of_forall_ge_succ (H : ∀ i, f i ≥ f (succ i)) : nonincreasing f :=
take i j,
nat.induction_on j
(suppose i ≤ 0, have i = 0, from eq_zero_of_le_zero this, by rewrite this; apply le.refl)
(take j', assume ih, suppose i ≤ succ j',
or.elim (le_or_eq_succ_of_le_succ this)
(suppose i ≤ j', le.trans (H j') (ih this))
(suppose i = succ j', by rewrite this; apply le.refl))
end
/- other forms of induction -/
protected definition strong_rec_on {P : nat → Type} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) : P n :=
nat.rec (λm h, absurd h !not_lt_zero)
(λn' (IH : ∀ {m : }, m < n' → P m) m l,
or.by_cases (lt_or_eq_of_le (le_of_lt_succ l))
IH (λ e, eq.rec (H n' @IH) e⁻¹)) (succ n) n !lt_succ_self
protected theorem strong_induction_on {P : nat → Prop} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) :
P n :=
nat.strong_rec_on n H
protected theorem case_strong_induction_on {P : nat → Prop} (a : nat) (H0 : P 0)
(Hind : ∀(n : nat), (∀m, m ≤ n → P m) → P (succ n)) : P a :=
nat.strong_induction_on a
(take n,
show (∀ m, m < n → P m) → P n, from
nat.cases_on n
(suppose (∀ m, m < 0 → P m), show P 0, from H0)
(take n,
suppose (∀ m, m < succ n → P m),
show P (succ n), from
Hind n (take m, assume H1 : m ≤ n, this _ (lt_succ_of_le H1))))
/- pos -/
theorem by_cases_zero_pos {P : → Prop} (y : ) (H0 : P 0) (H1 : ∀ {y : nat}, y > 0 → P y) :
P y :=
nat.cases_on y H0 (take y, H1 !succ_pos)
theorem eq_zero_or_pos (n : ) : n = 0 n > 0 :=
or_of_or_of_imp_left
(or.swap (lt_or_eq_of_le !zero_le))
(suppose 0 = n, by subst n)
theorem pos_of_ne_zero {n : } (H : n ≠ 0) : n > 0 :=
or.elim !eq_zero_or_pos (take H2 : n = 0, by contradiction) (take H2 : n > 0, H2)
theorem ne_zero_of_pos {n : } (H : n > 0) : n ≠ 0 :=
ne.symm (ne_of_lt H)
theorem exists_eq_succ_of_pos {n : } (H : n > 0) : ∃l, n = succ l :=
exists_eq_succ_of_lt H
theorem pos_of_dvd_of_pos {m n : } (H1 : m n) (H2 : n > 0) : m > 0 :=
pos_of_ne_zero
(suppose m = 0,
have n = 0, from eq_zero_of_zero_dvd (this ▸ H1),
ne_of_lt H2 (by subst n))
/- multiplication -/
theorem mul_lt_mul_of_le_of_lt {n m k l : } (Hk : k > 0) (H1 : n ≤ k) (H2 : m < l) :
n * m < k * l :=
lt_of_le_of_lt (mul_le_mul_right m H1) (mul_lt_mul_of_pos_left H2 Hk)
theorem mul_lt_mul_of_lt_of_le {n m k l : } (Hl : l > 0) (H1 : n < k) (H2 : m ≤ l) :
n * m < k * l :=
lt_of_le_of_lt (mul_le_mul_left n H2) (mul_lt_mul_of_pos_right H1 Hl)
theorem mul_lt_mul_of_le_of_le {n m k l : } (H1 : n < k) (H2 : m < l) : n * m < k * l :=
have H3 : n * m ≤ k * m, from mul_le_mul_right m (le_of_lt H1),
have H4 : k * m < k * l, from mul_lt_mul_of_pos_left H2 (lt_of_le_of_lt !zero_le H1),
lt_of_le_of_lt H3 H4
theorem eq_of_mul_eq_mul_left {m k n : } (Hn : n > 0) (H : n * m = n * k) : m = k :=
have n * m ≤ n * k, by rewrite H,
have m ≤ k, from le_of_mul_le_mul_left this Hn,
have n * k ≤ n * m, by rewrite H,
have k ≤ m, from le_of_mul_le_mul_left this Hn,
le.antisymm `m ≤ k` this
theorem eq_of_mul_eq_mul_right {n m k : } (Hm : m > 0) (H : n * m = k * m) : n = k :=
eq_of_mul_eq_mul_left Hm (!mul.comm ▸ !mul.comm ▸ H)
theorem eq_zero_or_eq_of_mul_eq_mul_left {n m k : } (H : n * m = n * k) : n = 0 m = k :=
or_of_or_of_imp_right !eq_zero_or_pos
(assume Hn : n > 0, eq_of_mul_eq_mul_left Hn H)
theorem eq_zero_or_eq_of_mul_eq_mul_right {n m k : } (H : n * m = k * m) : m = 0 n = k :=
eq_zero_or_eq_of_mul_eq_mul_left (!mul.comm ▸ !mul.comm ▸ H)
theorem eq_one_of_mul_eq_one_right {n m : } (H : n * m = 1) : n = 1 :=
have H2 : n * m > 0, by rewrite H; apply succ_pos,
or.elim (le_or_gt n 1)
(suppose n ≤ 1,
have n > 0, from pos_of_mul_pos_right H2,
show n = 1, from le.antisymm `n ≤ 1` (succ_le_of_lt this))
(suppose n > 1,
have m > 0, from pos_of_mul_pos_left H2,
have n * m ≥ 2 * 1, from nat.mul_le_mul (succ_le_of_lt `n > 1`) (succ_le_of_lt this),
have 1 ≥ 2, from !mul_one ▸ H ▸ this,
absurd !lt_succ_self (not_lt_of_ge this))
theorem eq_one_of_mul_eq_one_left {n m : } (H : n * m = 1) : m = 1 :=
eq_one_of_mul_eq_one_right (!mul.comm ▸ H)
theorem eq_one_of_mul_eq_self_left {n m : } (Hpos : n > 0) (H : m * n = n) : m = 1 :=
eq_of_mul_eq_mul_right Hpos (H ⬝ !one_mul⁻¹)
theorem eq_one_of_mul_eq_self_right {n m : } (Hpos : m > 0) (H : m * n = m) : n = 1 :=
eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H)
theorem eq_one_of_dvd_one {n : } (H : n 1) : n = 1 :=
dvd.elim H
(take m, suppose 1 = n * m,
eq_one_of_mul_eq_one_right this⁻¹)
/- min and max -/
open decidable
theorem min_zero [simp] (a : ) : min a 0 = 0 :=
by rewrite [min_eq_right !zero_le]
theorem zero_min [simp] (a : ) : min 0 a = 0 :=
by rewrite [min_eq_left !zero_le]
theorem max_zero [simp] (a : ) : max a 0 = a :=
by rewrite [max_eq_left !zero_le]
theorem zero_max [simp] (a : ) : max 0 a = a :=
by rewrite [max_eq_right !zero_le]
theorem min_succ_succ [simp] (a b : ) : min (succ a) (succ b) = succ (min a b) :=
or.elim !lt_or_ge
(suppose a < b, by rewrite [min_eq_left_of_lt this, min_eq_left_of_lt (succ_lt_succ this)])
(suppose a ≥ b, by rewrite [min_eq_right this, min_eq_right (succ_le_succ this)])
theorem max_succ_succ [simp] (a b : ) : max (succ a) (succ b) = succ (max a b) :=
or.elim !lt_or_ge
(suppose a < b, by rewrite [max_eq_right_of_lt this, max_eq_right_of_lt (succ_lt_succ this)])
(suppose a ≥ b, by rewrite [max_eq_left this, max_eq_left (succ_le_succ this)])
/- In algebra.ordered_group, these next four are only proved for additive groups, not additive
semigroups. -/
protected theorem min_add_add_left (a b c : ) : min (a + b) (a + c) = a + min b c :=
decidable.by_cases
(suppose b ≤ c,
have a + b ≤ a + c, from add_le_add_left this _,
by rewrite [min_eq_left `b ≤ c`, min_eq_left this])
(suppose ¬ b ≤ c,
have c ≤ b, from le_of_lt (lt_of_not_ge this),
have a + c ≤ a + b, from add_le_add_left this _,
by rewrite [min_eq_right `c ≤ b`, min_eq_right this])
protected theorem min_add_add_right (a b c : ) : min (a + c) (b + c) = min a b + c :=
by rewrite [add.comm a c, add.comm b c, add.comm _ c]; apply nat.min_add_add_left
protected theorem max_add_add_left (a b c : ) : max (a + b) (a + c) = a + max b c :=
decidable.by_cases
(suppose b ≤ c,
have a + b ≤ a + c, from add_le_add_left this _,
by rewrite [max_eq_right `b ≤ c`, max_eq_right this])
(suppose ¬ b ≤ c,
have c ≤ b, from le_of_lt (lt_of_not_ge this),
have a + c ≤ a + b, from add_le_add_left this _,
by rewrite [max_eq_left `c ≤ b`, max_eq_left this])
protected theorem max_add_add_right (a b c : ) : max (a + c) (b + c) = max a b + c :=
by rewrite [add.comm a c, add.comm b c, add.comm _ c]; apply nat.max_add_add_left
/- least and greatest -/
section least_and_greatest
variable (P : → Prop)
variable [decP : ∀ n, decidable (P n)]
include decP
-- returns the least i < n satisfying P, or n if there is none
definition least :
| 0 := 0
| (succ n) := if P (least n) then least n else succ n
theorem least_of_bound {n : } (H : P n) : P (least P n) :=
begin
induction n with [m, ih],
rewrite ↑least,
apply H,
rewrite ↑least,
cases decidable.em (P (least P m)) with [Hlp, Hlp],
rewrite [if_pos Hlp],
apply Hlp,
rewrite [if_neg Hlp],
apply H
end
theorem least_le (n : ) : least P n ≤ n:=
begin
induction n with [m, ih],
{rewrite ↑least},
rewrite ↑least,
cases decidable.em (P (least P m)) with [Psm, Pnsm],
rewrite [if_pos Psm],
apply le.trans ih !le_succ,
rewrite [if_neg Pnsm]
end
theorem least_of_lt {i n : } (ltin : i < n) (H : P i) : P (least P n) :=
begin
induction n with [m, ih],
exact absurd ltin !not_lt_zero,
rewrite ↑least,
cases decidable.em (P (least P m)) with [Psm, Pnsm],
rewrite [if_pos Psm],
apply Psm,
rewrite [if_neg Pnsm],
cases (lt_or_eq_of_le (le_of_lt_succ ltin)) with [Hlt, Heq],
exact absurd (ih Hlt) Pnsm,
rewrite Heq at H,
exact absurd (least_of_bound P H) Pnsm
end
theorem ge_least_of_lt {i n : } (ltin : i < n) (Hi : P i) : i ≥ least P n :=
begin
induction n with [m, ih],
exact absurd ltin !not_lt_zero,
rewrite ↑least,
cases decidable.em (P (least P m)) with [Psm, Pnsm],
rewrite [if_pos Psm],
cases (lt_or_eq_of_le (le_of_lt_succ ltin)) with [Hlt, Heq],
apply ih Hlt,
rewrite Heq,
apply least_le,
rewrite [if_neg Pnsm],
cases (lt_or_eq_of_le (le_of_lt_succ ltin)) with [Hlt, Heq],
apply absurd (least_of_lt P Hlt Hi) Pnsm,
rewrite Heq at Hi,
apply absurd (least_of_bound P Hi) Pnsm
end
theorem least_lt {n i : } (ltin : i < n) (Hi : P i) : least P n < n :=
lt_of_le_of_lt (ge_least_of_lt P ltin Hi) ltin
-- returns the largest i < n satisfying P, or n if there is none.
definition greatest :
| 0 := 0
| (succ n) := if P n then n else greatest n
theorem greatest_of_lt {i n : } (ltin : i < n) (Hi : P i) : P (greatest P n) :=
begin
induction n with [m, ih],
{exact absurd ltin !not_lt_zero},
{cases (decidable.em (P m)) with [Psm, Pnsm],
{rewrite [↑greatest, if_pos Psm]; exact Psm},
{rewrite [↑greatest, if_neg Pnsm],
have neim : i ≠ m, from assume H : i = m, absurd (H ▸ Hi) Pnsm,
have ltim : i < m, from lt_of_le_of_ne (le_of_lt_succ ltin) neim,
apply ih ltim}}
end
theorem le_greatest_of_lt {i n : } (ltin : i < n) (Hi : P i) : i ≤ greatest P n :=
begin
induction n with [m, ih],
{exact absurd ltin !not_lt_zero},
{cases (decidable.em (P m)) with [Psm, Pnsm],
{rewrite [↑greatest, if_pos Psm], apply le_of_lt_succ ltin},
{rewrite [↑greatest, if_neg Pnsm],
have neim : i ≠ m, from assume H : i = m, absurd (H ▸ Hi) Pnsm,
have ltim : i < m, from lt_of_le_of_ne (le_of_lt_succ ltin) neim,
apply ih ltim}}
end
end least_and_greatest
end nat