e5d5ef9d55
Most notably: Give le.refl the attribute [refl]. This simplifies tactic proofs in various places. Redefine the order of trunc_index, and instantiate it as weak order. Add more about pointed equivalences.
441 lines
16 KiB
Text
441 lines
16 KiB
Text
/-
|
||
Copyright (c) 2015 Jakob von Raumer. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
Properties of is_trunc and trunctype
|
||
-/
|
||
|
||
-- NOTE: the fact that (is_trunc n A) is a mere proposition is proved in .prop_trunc
|
||
|
||
import .pointed2 ..function algebra.order types.nat.order
|
||
|
||
open eq sigma sigma.ops pi function equiv trunctype
|
||
is_equiv prod is_trunc.trunc_index pointed nat is_trunc algebra
|
||
|
||
namespace is_trunc
|
||
|
||
namespace trunc_index
|
||
|
||
definition minus_one_le_succ (n : trunc_index) : -1 ≤ n.+1 :=
|
||
succ_le_succ (minus_two_le n)
|
||
|
||
definition zero_le_of_nat (n : ℕ) : 0 ≤ of_nat n :=
|
||
succ_le_succ !minus_one_le_succ
|
||
|
||
open decidable
|
||
protected definition has_decidable_eq [instance] : Π(n m : ℕ₋₂), decidable (n = m)
|
||
| has_decidable_eq -2 -2 := inl rfl
|
||
| has_decidable_eq (n.+1) -2 := inr (by contradiction)
|
||
| has_decidable_eq -2 (m.+1) := inr (by contradiction)
|
||
| has_decidable_eq (n.+1) (m.+1) :=
|
||
match has_decidable_eq n m with
|
||
| inl xeqy := inl (by rewrite xeqy)
|
||
| inr xney := inr (λ h : succ n = succ m, by injection h with xeqy; exact absurd xeqy xney)
|
||
end
|
||
|
||
definition not_succ_le_minus_two {n : trunc_index} (H : n .+1 ≤ -2) : empty :=
|
||
by cases H
|
||
|
||
protected definition le_trans {n m k : ℕ₋₂} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k :=
|
||
begin
|
||
induction H2 with k H2 IH,
|
||
{ exact H1},
|
||
{ exact le.step IH}
|
||
end
|
||
|
||
definition le_of_succ_le_succ {n m : trunc_index} (H : n.+1 ≤ m.+1) : n ≤ m :=
|
||
begin
|
||
cases H with m H',
|
||
{ apply le.tr_refl},
|
||
{ exact trunc_index.le_trans (le.step !le.tr_refl) H'}
|
||
end
|
||
|
||
theorem not_succ_le_self {n : ℕ₋₂} : ¬n.+1 ≤ n :=
|
||
begin
|
||
induction n with n IH: intro H,
|
||
{ exact not_succ_le_minus_two H},
|
||
{ exact IH (le_of_succ_le_succ H)}
|
||
end
|
||
|
||
protected definition le_antisymm {n m : ℕ₋₂} (H1 : n ≤ m) (H2 : m ≤ n) : n = m :=
|
||
begin
|
||
induction H2 with n H2 IH,
|
||
{ reflexivity},
|
||
{ exfalso, apply @not_succ_le_self n, exact trunc_index.le_trans H1 H2}
|
||
end
|
||
|
||
protected definition le_succ {n m : ℕ₋₂} (H1 : n ≤ m): n ≤ m.+1 :=
|
||
le.step H1
|
||
|
||
end trunc_index open trunc_index
|
||
|
||
definition weak_order_trunc_index [trans_instance] [reducible] : weak_order trunc_index :=
|
||
weak_order.mk le trunc_index.le_refl @trunc_index.le_trans @trunc_index.le_antisymm
|
||
|
||
namespace trunc_index
|
||
|
||
/- more theorems about truncation indices -/
|
||
|
||
definition succ_add_nat (n : ℕ₋₂) (m : ℕ) : n.+1 + m = (n + m).+1 :=
|
||
by induction m with m IH; reflexivity; exact ap succ IH
|
||
|
||
definition nat_add_succ (n : ℕ) (m : ℕ₋₂) : n + m.+1 = (n + m).+1 :=
|
||
begin
|
||
cases m with m, reflexivity,
|
||
cases m with m, reflexivity,
|
||
induction m with m IH, reflexivity, exact ap succ IH
|
||
end
|
||
|
||
definition add_nat_succ (n : ℕ₋₂) (m : ℕ) : n + (nat.succ m) = (n + m).+1 :=
|
||
by reflexivity
|
||
|
||
definition nat_succ_add (n : ℕ) (m : ℕ₋₂) : (nat.succ n) + m = (n + m).+1 :=
|
||
begin
|
||
cases m with m, reflexivity,
|
||
cases m with m, reflexivity,
|
||
induction m with m IH, reflexivity, exact ap succ IH
|
||
end
|
||
|
||
definition sub_two_add_two (n : ℕ₋₂) : sub_two (add_two n) = n :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ apply ap succ IH}
|
||
end
|
||
|
||
definition add_two_sub_two (n : ℕ) : add_two (sub_two n) = n :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ apply ap nat.succ IH}
|
||
end
|
||
|
||
definition succ_sub_two (n : ℕ) : (nat.succ n).-2 = n.-2 .+1 := rfl
|
||
definition sub_two_succ_succ (n : ℕ) : n.-2.+1.+1 = n := rfl
|
||
definition succ_sub_two_succ (n : ℕ) : (nat.succ n).-2.+1 = n := rfl
|
||
|
||
definition of_nat_le_of_nat {n m : ℕ} (H : n ≤ m) : (of_nat n ≤ of_nat m) :=
|
||
begin
|
||
induction H with m H IH,
|
||
{ apply le.refl},
|
||
{ exact trunc_index.le_succ IH}
|
||
end
|
||
|
||
definition sub_two_le_sub_two {n m : ℕ} (H : n ≤ m) : n.-2 ≤ m.-2 :=
|
||
begin
|
||
induction H with m H IH,
|
||
{ apply le.refl},
|
||
{ exact trunc_index.le_succ IH}
|
||
end
|
||
|
||
definition add_two_le_add_two {n m : ℕ₋₂} (H : n ≤ m) : add_two n ≤ add_two m :=
|
||
begin
|
||
induction H with m H IH,
|
||
{ reflexivity},
|
||
{ constructor, exact IH},
|
||
end
|
||
|
||
definition le_of_sub_two_le_sub_two {n m : ℕ} (H : n.-2 ≤ m.-2) : n ≤ m :=
|
||
begin
|
||
rewrite [-add_two_sub_two n, -add_two_sub_two m],
|
||
exact add_two_le_add_two H,
|
||
end
|
||
|
||
definition le_of_of_nat_le_of_nat {n m : ℕ} (H : of_nat n ≤ of_nat m) : n ≤ m :=
|
||
begin
|
||
apply le_of_sub_two_le_sub_two,
|
||
exact le_of_succ_le_succ (le_of_succ_le_succ H)
|
||
end
|
||
|
||
end trunc_index open trunc_index
|
||
|
||
variables {A B : Type} {n : ℕ₋₂}
|
||
|
||
/- theorems about trunctype -/
|
||
protected definition trunctype.sigma_char.{l} [constructor] (n : ℕ₋₂) :
|
||
(trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro A, exact (⟨carrier A, struct A⟩)},
|
||
{ intro S, exact (trunctype.mk S.1 S.2)},
|
||
{ intro S, induction S with S1 S2, reflexivity},
|
||
{ intro A, induction A with A1 A2, reflexivity},
|
||
end
|
||
|
||
definition trunctype_eq_equiv [constructor] (n : ℕ₋₂) (A B : n-Type) :
|
||
(A = B) ≃ (carrier A = carrier B) :=
|
||
calc
|
||
(A = B) ≃ (to_fun (trunctype.sigma_char n) A = to_fun (trunctype.sigma_char n) B)
|
||
: eq_equiv_fn_eq_of_equiv
|
||
... ≃ ((to_fun (trunctype.sigma_char n) A).1 = (to_fun (trunctype.sigma_char n) B).1)
|
||
: equiv.symm (!equiv_subtype)
|
||
... ≃ (carrier A = carrier B) : equiv.refl
|
||
|
||
theorem is_trunc_is_embedding_closed (f : A → B) [Hf : is_embedding f] [HB : is_trunc n B]
|
||
(Hn : -1 ≤ n) : is_trunc n A :=
|
||
begin
|
||
induction n with n,
|
||
{exfalso, exact not_succ_le_minus_two Hn},
|
||
{apply is_trunc_succ_intro, intro a a',
|
||
fapply @is_trunc_is_equiv_closed_rev _ _ n (ap f)}
|
||
end
|
||
|
||
theorem is_trunc_is_retraction_closed (f : A → B) [Hf : is_retraction f]
|
||
(n : ℕ₋₂) [HA : is_trunc n A] : is_trunc n B :=
|
||
begin
|
||
revert A B f Hf HA,
|
||
induction n with n IH,
|
||
{ intro A B f Hf HA, induction Hf with g ε, fapply is_contr.mk,
|
||
{ exact f (center A)},
|
||
{ intro b, apply concat,
|
||
{ apply (ap f), exact (center_eq (g b))},
|
||
{ apply ε}}},
|
||
{ intro A B f Hf HA, induction Hf with g ε,
|
||
apply is_trunc_succ_intro, intro b b',
|
||
fapply (IH (g b = g b')),
|
||
{ intro q, exact ((ε b)⁻¹ ⬝ ap f q ⬝ ε b')},
|
||
{ apply (is_retraction.mk (ap g)),
|
||
{ intro p, induction p, {rewrite [↑ap, con.left_inv]}}},
|
||
{ apply is_trunc_eq}}
|
||
end
|
||
|
||
definition is_embedding_to_fun (A B : Type) : is_embedding (@to_fun A B) :=
|
||
λf f', !is_equiv_ap_to_fun
|
||
|
||
theorem is_trunc_trunctype [instance] (n : ℕ₋₂) : is_trunc n.+1 (n-Type) :=
|
||
begin
|
||
apply is_trunc_succ_intro, intro X Y,
|
||
fapply is_trunc_equiv_closed,
|
||
{ apply equiv.symm, apply trunctype_eq_equiv},
|
||
fapply is_trunc_equiv_closed,
|
||
{ apply equiv.symm, apply eq_equiv_equiv},
|
||
induction n,
|
||
{ apply @is_contr_of_inhabited_prop,
|
||
{ apply is_trunc_is_embedding_closed,
|
||
{ apply is_embedding_to_fun} ,
|
||
{ reflexivity}},
|
||
{ apply equiv_of_is_contr_of_is_contr}},
|
||
{ apply is_trunc_is_embedding_closed,
|
||
{ apply is_embedding_to_fun},
|
||
{ apply minus_one_le_succ}}
|
||
end
|
||
|
||
|
||
/- theorems about decidable equality and axiom K -/
|
||
theorem is_set_of_axiom_K {A : Type} (K : Π{a : A} (p : a = a), p = idp) : is_set A :=
|
||
is_set.mk _ (λa b p q, eq.rec_on q K p)
|
||
|
||
theorem is_set_of_relation.{u} {A : Type.{u}} (R : A → A → Type.{u})
|
||
(mere : Π(a b : A), is_prop (R a b)) (refl : Π(a : A), R a a)
|
||
(imp : Π{a b : A}, R a b → a = b) : is_set A :=
|
||
is_set_of_axiom_K
|
||
(λa p,
|
||
have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apd,
|
||
have H3 : Π(r : R a a), transport (λx, a = x) p (imp r)
|
||
= imp (transport (λx, R a x) p r), from
|
||
to_fun (equiv.symm !heq_pi) H2,
|
||
have H4 : imp (refl a) ⬝ p = imp (refl a), from
|
||
calc
|
||
imp (refl a) ⬝ p = transport (λx, a = x) p (imp (refl a)) : transport_eq_r
|
||
... = imp (transport (λx, R a x) p (refl a)) : H3
|
||
... = imp (refl a) : is_prop.elim,
|
||
cancel_left (imp (refl a)) H4)
|
||
|
||
definition relation_equiv_eq {A : Type} (R : A → A → Type)
|
||
(mere : Π(a b : A), is_prop (R a b)) (refl : Π(a : A), R a a)
|
||
(imp : Π{a b : A}, R a b → a = b) (a b : A) : R a b ≃ a = b :=
|
||
@equiv_of_is_prop _ _ _
|
||
(@is_trunc_eq _ _ (is_set_of_relation R mere refl @imp) a b)
|
||
imp
|
||
(λp, p ▸ refl a)
|
||
|
||
local attribute not [reducible]
|
||
theorem is_set_of_double_neg_elim {A : Type} (H : Π(a b : A), ¬¬a = b → a = b)
|
||
: is_set A :=
|
||
is_set_of_relation (λa b, ¬¬a = b) _ (λa n, n idp) H
|
||
|
||
section
|
||
open decidable
|
||
--this is proven differently in init.hedberg
|
||
theorem is_set_of_decidable_eq (A : Type) [H : decidable_eq A] : is_set A :=
|
||
is_set_of_double_neg_elim (λa b, by_contradiction)
|
||
end
|
||
|
||
theorem is_trunc_of_axiom_K_of_le {A : Type} (n : ℕ₋₂) (H : -1 ≤ n)
|
||
(K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A :=
|
||
@is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_le H (λp, eq.rec_on p !K))
|
||
|
||
theorem is_trunc_succ_of_is_trunc_loop (Hn : -1 ≤ n) (Hp : Π(a : A), is_trunc n (a = a))
|
||
: is_trunc (n.+1) A :=
|
||
begin
|
||
apply is_trunc_succ_intro, intros a a',
|
||
apply is_trunc_of_imp_is_trunc_of_le Hn, intro p,
|
||
induction p, apply Hp
|
||
end
|
||
|
||
theorem is_prop_iff_is_contr {A : Type} (a : A) :
|
||
is_prop A ↔ is_contr A :=
|
||
iff.intro (λH, is_contr.mk a (is_prop.elim a)) _
|
||
|
||
theorem is_trunc_succ_iff_is_trunc_loop (A : Type) (Hn : -1 ≤ n) :
|
||
is_trunc (n.+1) A ↔ Π(a : A), is_trunc n (a = a) :=
|
||
iff.intro _ (is_trunc_succ_of_is_trunc_loop Hn)
|
||
|
||
theorem is_trunc_iff_is_contr_loop_succ (n : ℕ) (A : Type)
|
||
: is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](pointed.Mk a)) :=
|
||
begin
|
||
revert A, induction n with n IH,
|
||
{ intro A, esimp [iterated_ploop_space], transitivity _,
|
||
{ apply is_trunc_succ_iff_is_trunc_loop, apply le.refl},
|
||
{ apply pi_iff_pi, intro a, esimp, apply is_prop_iff_is_contr, reflexivity}},
|
||
{ intro A, esimp [iterated_ploop_space],
|
||
transitivity _,
|
||
{ apply @is_trunc_succ_iff_is_trunc_loop @n, esimp, apply minus_one_le_succ},
|
||
apply pi_iff_pi, intro a, transitivity _, apply IH,
|
||
transitivity _, apply pi_iff_pi, intro p,
|
||
rewrite [iterated_loop_space_loop_irrel n p], apply iff.refl, esimp,
|
||
apply imp_iff, reflexivity}
|
||
end
|
||
|
||
theorem is_trunc_iff_is_contr_loop (n : ℕ) (A : Type)
|
||
: is_trunc (n.-2.+1) A ↔ (Π(a : A), is_contr (Ω[n](pointed.Mk a))) :=
|
||
begin
|
||
induction n with n,
|
||
{ esimp [sub_two,iterated_ploop_space], apply iff.intro,
|
||
intro H a, exact is_contr_of_inhabited_prop a,
|
||
intro H, apply is_prop_of_imp_is_contr, exact H},
|
||
{ apply is_trunc_iff_is_contr_loop_succ},
|
||
end
|
||
|
||
theorem is_contr_loop_of_is_trunc (n : ℕ) (A : Type*) [H : is_trunc (n.-2.+1) A] :
|
||
is_contr (Ω[n] A) :=
|
||
begin
|
||
induction A,
|
||
apply iff.mp !is_trunc_iff_is_contr_loop H
|
||
end
|
||
|
||
end is_trunc open is_trunc is_trunc.trunc_index
|
||
|
||
namespace trunc
|
||
variable {A : Type}
|
||
|
||
protected definition code (n : ℕ₋₂) (aa aa' : trunc n.+1 A) : n-Type :=
|
||
trunc.rec_on aa (λa, trunc.rec_on aa' (λa', trunctype.mk' n (trunc n (a = a'))))
|
||
|
||
protected definition encode (n : ℕ₋₂) (aa aa' : trunc n.+1 A) : aa = aa' → trunc.code n aa aa' :=
|
||
begin
|
||
intro p, induction p, induction aa with a, esimp [trunc.code,trunc.rec_on], exact (tr idp)
|
||
end
|
||
|
||
protected definition decode (n : ℕ₋₂) (aa aa' : trunc n.+1 A) : trunc.code n aa aa' → aa = aa' :=
|
||
begin
|
||
induction aa' with a', induction aa with a,
|
||
esimp [trunc.code, trunc.rec_on], intro x,
|
||
induction x with p, exact ap tr p,
|
||
end
|
||
|
||
definition trunc_eq_equiv [constructor] (n : ℕ₋₂) (aa aa' : trunc n.+1 A)
|
||
: aa = aa' ≃ trunc.code n aa aa' :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ apply trunc.encode},
|
||
{ apply trunc.decode},
|
||
{ eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa),
|
||
intro a a' x, esimp [trunc.code, trunc.rec_on] at x,
|
||
refine (@trunc.rec_on n _ _ x _ _),
|
||
intro x, apply is_trunc_eq,
|
||
intro p, induction p, reflexivity},
|
||
{ intro p, induction p, apply (trunc.rec_on aa), intro a, exact idp},
|
||
end
|
||
|
||
definition tr_eq_tr_equiv [constructor] (n : ℕ₋₂) (a a' : A)
|
||
: (tr a = tr a' :> trunc n.+1 A) ≃ trunc n (a = a') :=
|
||
!trunc_eq_equiv
|
||
|
||
definition is_trunc_trunc_of_is_trunc [instance] [priority 500] (A : Type)
|
||
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (trunc m A) :=
|
||
begin
|
||
revert A m H, eapply (trunc_index.rec_on n),
|
||
{ clear n, intro A m H, apply is_contr_equiv_closed,
|
||
{ apply equiv.symm, apply trunc_equiv, apply (@is_trunc_of_le _ -2), apply minus_two_le} },
|
||
{ clear n, intro n IH A m H, induction m with m,
|
||
{ apply (@is_trunc_of_le _ -2), apply minus_two_le},
|
||
{ apply is_trunc_succ_intro, intro aa aa',
|
||
apply (@trunc.rec_on _ _ _ aa (λy, !is_trunc_succ_of_is_prop)),
|
||
eapply (@trunc.rec_on _ _ _ aa' (λy, !is_trunc_succ_of_is_prop)),
|
||
intro a a', apply (is_trunc_equiv_closed_rev),
|
||
{ apply tr_eq_tr_equiv},
|
||
{ exact (IH _ _ _)}}}
|
||
end
|
||
|
||
open equiv.ops
|
||
definition unique_choice {P : A → Type} [H : Πa, is_prop (P a)] (f : Πa, ∥ P a ∥) (a : A)
|
||
: P a :=
|
||
!trunc_equiv (f a)
|
||
|
||
/- transport over a truncated family -/
|
||
definition trunc_transport {a a' : A} {P : A → Type} (p : a = a') (n : ℕ₋₂) (x : P a)
|
||
: transport (λa, trunc n (P a)) p (tr x) = tr (p ▸ x) :=
|
||
by induction p; reflexivity
|
||
|
||
definition trunc_trunc_equiv_left [constructor] (A : Type) (n m : ℕ₋₂) (H : n ≤ m)
|
||
: trunc n (trunc m A) ≃ trunc n A :=
|
||
begin
|
||
note H2 := is_trunc_of_le (trunc n A) H,
|
||
fapply equiv.MK,
|
||
{ intro x, induction x with x, induction x with x, exact tr x},
|
||
{ intro x, induction x with x, exact tr (tr x)},
|
||
{ intro x, induction x with x, reflexivity},
|
||
{ intro x, induction x with x, induction x with x, reflexivity}
|
||
end
|
||
|
||
definition trunc_trunc_equiv_right [constructor] (A : Type) (n m : ℕ₋₂) (H : n ≤ m)
|
||
: trunc m (trunc n A) ≃ trunc n A :=
|
||
begin
|
||
apply trunc_equiv,
|
||
exact is_trunc_of_le _ H,
|
||
end
|
||
|
||
definition image [constructor] {A B : Type} (f : A → B) (b : B) : Prop := ∥ fiber f b ∥
|
||
|
||
definition image.mk [constructor] {A B : Type} {f : A → B} {b : B} (a : A) (p : f a = b)
|
||
: image f b :=
|
||
tr (fiber.mk a p)
|
||
|
||
-- truncation of pointed types
|
||
definition ptrunc [constructor] (n : ℕ₋₂) (X : Type*) : n-Type* :=
|
||
ptrunctype.mk (trunc n X) _ (tr pt)
|
||
|
||
definition ptrunc_functor [constructor] {X Y : Type*} (n : ℕ₋₂) (f : X →* Y)
|
||
: ptrunc n X →* ptrunc n Y :=
|
||
pmap.mk (trunc_functor n f) (ap tr (respect_pt f))
|
||
|
||
definition loop_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A : Type*) :
|
||
Ω (ptrunc (n+1) A) ≃* ptrunc n (Ω A) :=
|
||
pequiv_of_equiv !tr_eq_tr_equiv idp
|
||
|
||
definition iterated_loop_ptrunc_pequiv [constructor] (n : ℕ₋₂) (k : ℕ) (A : Type*) :
|
||
Ω[k] (ptrunc (n+k) A) ≃* ptrunc n (Ω[k] A) :=
|
||
begin
|
||
revert n, induction k with k IH: intro n,
|
||
{ reflexivity},
|
||
{ refine _ ⬝e* loop_ptrunc_pequiv n (Ω[k] A),
|
||
rewrite [iterated_ploop_space_succ], apply loop_pequiv_loop,
|
||
refine _ ⬝e* IH (n.+1),
|
||
rewrite succ_add_nat}
|
||
end
|
||
|
||
end trunc open trunc
|
||
|
||
namespace function
|
||
variables {A B : Type}
|
||
definition is_surjective_of_is_equiv [instance] (f : A → B) [H : is_equiv f] : is_surjective f :=
|
||
λb, !center
|
||
|
||
definition is_equiv_equiv_is_embedding_times_is_surjective [constructor] (f : A → B)
|
||
: is_equiv f ≃ (is_embedding f × is_surjective f) :=
|
||
equiv_of_is_prop (λH, (_, _))
|
||
(λP, prod.rec_on P (λH₁ H₂, !is_equiv_of_is_surjective_of_is_embedding))
|
||
|
||
end function
|