a618bd7d6c
Before this commit we were using overloading for concrete structures and type classes for abstract ones. This is the first of series of commits that implement this modification
166 lines
6.8 KiB
Text
166 lines
6.8 KiB
Text
/-
|
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Leonardo de Moura
|
|
|
|
Very simple (sqrt n) function that returns s s.t.
|
|
s*s ≤ n ≤ s*s + s + s
|
|
-/
|
|
import data.nat.order data.nat.sub
|
|
|
|
namespace nat
|
|
open decidable
|
|
open - [notations] algebra
|
|
|
|
-- This is the simplest possible function that just performs a linear search
|
|
definition sqrt_aux : nat → nat → nat
|
|
| 0 n := 0
|
|
| (succ s) n := if (succ s)*(succ s) ≤ n then succ s else sqrt_aux s n
|
|
|
|
theorem sqrt_aux_succ_of_pos {s n} : (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = (succ s) :=
|
|
assume h, if_pos h
|
|
|
|
theorem sqrt_aux_succ_of_neg {s n} : ¬ (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = sqrt_aux s n :=
|
|
assume h, if_neg h
|
|
|
|
theorem sqrt_aux_of_le : ∀ {s n : nat}, s * s ≤ n → sqrt_aux s n = s
|
|
| 0 n h := rfl
|
|
| (succ s) n h := by rewrite [sqrt_aux_succ_of_pos h]
|
|
|
|
theorem sqrt_aux_le : ∀ (s n), sqrt_aux s n ≤ s
|
|
| 0 n := !zero_le
|
|
| (succ s) n := or.elim (em ((succ s)*(succ s) ≤ n))
|
|
(λ h, begin unfold sqrt_aux, rewrite [if_pos h] end)
|
|
(λ h,
|
|
assert sqrt_aux s n ≤ succ s, from le.step (sqrt_aux_le s n),
|
|
begin unfold sqrt_aux, rewrite [if_neg h], assumption end)
|
|
|
|
definition sqrt (n : nat) : nat :=
|
|
sqrt_aux n n
|
|
|
|
theorem sqrt_aux_lower : ∀ {s n : nat}, s ≤ n → sqrt_aux s n * sqrt_aux s n ≤ n
|
|
| 0 n h := h
|
|
| (succ s) n h := by_cases
|
|
(λ h₁ : (succ s)*(succ s) ≤ n, by rewrite [sqrt_aux_succ_of_pos h₁]; exact h₁)
|
|
(λ h₂ : ¬ (succ s)*(succ s) ≤ n,
|
|
assert aux : s ≤ n, from le_of_succ_le h,
|
|
by rewrite [sqrt_aux_succ_of_neg h₂]; exact (sqrt_aux_lower aux))
|
|
|
|
theorem sqrt_lower (n : nat) : sqrt n * sqrt n ≤ n :=
|
|
sqrt_aux_lower (le.refl n)
|
|
|
|
theorem sqrt_aux_upper : ∀ {s n : nat}, n ≤ s*s + s + s → n ≤ sqrt_aux s n * sqrt_aux s n + sqrt_aux s n + sqrt_aux s n
|
|
| 0 n h := h
|
|
| (succ s) n h := by_cases
|
|
(λ h₁ : (succ s)*(succ s) ≤ n,
|
|
by rewrite [sqrt_aux_succ_of_pos h₁]; exact h)
|
|
(λ h₂ : ¬ (succ s)*(succ s) ≤ n,
|
|
assert h₃ : n < (succ s) * (succ s), from lt_of_not_ge h₂,
|
|
assert h₄ : n ≤ s * s + s + s, by rewrite [succ_mul_succ_eq at h₃]; exact le_of_lt_succ h₃,
|
|
by rewrite [sqrt_aux_succ_of_neg h₂]; exact (sqrt_aux_upper h₄))
|
|
|
|
theorem sqrt_upper (n : nat) : n ≤ sqrt n * sqrt n + sqrt n + sqrt n :=
|
|
have aux : n ≤ n*n + n + n, from le_add_of_le_right (le_add_of_le_left (le.refl n)),
|
|
sqrt_aux_upper aux
|
|
|
|
private theorem le_squared : ∀ (n : nat), n ≤ n*n
|
|
| 0 := !le.refl
|
|
| (succ n) :=
|
|
have aux₁ : 1 ≤ succ n, from succ_le_succ !zero_le,
|
|
assert aux₂ : 1 * succ n ≤ succ n * succ n, from mul_le_mul aux₁ !le.refl,
|
|
by rewrite [one_mul at aux₂]; exact aux₂
|
|
|
|
private theorem lt_squared : ∀ {n}, n > 1 → n < n * n
|
|
| 0 h := absurd h dec_trivial
|
|
| 1 h := absurd h dec_trivial
|
|
| (succ (succ n)) h :=
|
|
have 1 < succ (succ n), from dec_trivial,
|
|
assert succ (succ n) * 1 < succ (succ n) * succ (succ n), from mul_lt_mul_of_pos_left this dec_trivial,
|
|
by rewrite [mul_one at this]; exact this
|
|
|
|
theorem sqrt_le (n : nat) : sqrt n ≤ n :=
|
|
calc sqrt n ≤ sqrt n * sqrt n : le_squared
|
|
... ≤ n : sqrt_lower
|
|
|
|
theorem eq_zero_of_sqrt_eq_zero {n : nat} : sqrt n = 0 → n = 0 :=
|
|
suppose sqrt n = 0,
|
|
assert n ≤ sqrt n * sqrt n + sqrt n + sqrt n, from !sqrt_upper,
|
|
have n ≤ 0, by rewrite [*`sqrt n = 0` at this]; exact this,
|
|
eq_zero_of_le_zero this
|
|
|
|
theorem le_three_of_sqrt_eq_one {n : nat} : sqrt n = 1 → n ≤ 3 :=
|
|
suppose sqrt n = 1,
|
|
assert n ≤ sqrt n * sqrt n + sqrt n + sqrt n, from !sqrt_upper,
|
|
show n ≤ 3, by rewrite [*`sqrt n = 1` at this]; exact this
|
|
|
|
theorem sqrt_lt : ∀ {n : nat}, n > 1 → sqrt n < n
|
|
| 0 h := absurd h dec_trivial
|
|
| 1 h := absurd h dec_trivial
|
|
| 2 h := dec_trivial
|
|
| 3 h := dec_trivial
|
|
| (n+4) h :=
|
|
have sqrt (n+4) > 1, from by_contradiction
|
|
(suppose ¬ sqrt (n+4) > 1,
|
|
have sqrt (n+4) ≤ 1, from le_of_not_gt this,
|
|
or.elim (eq_or_lt_of_le this)
|
|
(suppose sqrt (n+4) = 1,
|
|
have n+4 ≤ 3, from le_three_of_sqrt_eq_one this,
|
|
absurd this dec_trivial)
|
|
(suppose sqrt (n+4) < 1,
|
|
have sqrt (n+4) = 0, from eq_zero_of_le_zero (le_of_lt_succ this),
|
|
have n + 4 = 0, from eq_zero_of_sqrt_eq_zero this,
|
|
absurd this dec_trivial)),
|
|
calc sqrt (n+4) < sqrt (n+4) * sqrt (n+4) : lt_squared this
|
|
... ≤ n+4 : sqrt_lower
|
|
|
|
theorem sqrt_pos_of_pos {n : nat} : n > 0 → sqrt n > 0 :=
|
|
suppose n > 0,
|
|
have sqrt n ≠ 0, from
|
|
suppose sqrt n = 0,
|
|
assert n = 0, from eq_zero_of_sqrt_eq_zero this,
|
|
by subst n; exact absurd `0 > 0` !lt.irrefl,
|
|
pos_of_ne_zero this
|
|
|
|
theorem sqrt_aux_offset_eq {n k : nat} (h₁ : k ≤ n + n) : ∀ {s}, s ≥ n → sqrt_aux s (n*n + k) = n
|
|
| 0 h₂ :=
|
|
assert neqz : n = 0, from eq_zero_of_le_zero h₂,
|
|
by rewrite neqz
|
|
| (succ s) h₂ := by_cases
|
|
(λ hl : (succ s)*(succ s) ≤ n*n + k,
|
|
have l₁ : n*n + k ≤ n*n + n + n, from by rewrite [add.assoc]; exact (add_le_add_left h₁ (n*n)),
|
|
assert l₂ : n*n + k < n*n + n + n + 1, from lt_succ_of_le l₁,
|
|
have l₃ : n*n + k < (succ n)*(succ n), by rewrite [-succ_mul_succ_eq at l₂]; exact l₂,
|
|
assert l₄ : (succ s)*(succ s) < (succ n)*(succ n), from lt_of_le_of_lt hl l₃,
|
|
have ng : ¬ succ s > (succ n), from
|
|
assume g : succ s > succ n,
|
|
have g₁ : (succ s)*(succ s) > (succ n)*(succ n), from mul_lt_mul_of_le_of_le g g,
|
|
absurd (lt.trans g₁ l₄) !lt.irrefl,
|
|
have sslesn : succ s ≤ succ n, from le_of_not_gt ng,
|
|
have ssnesn : succ s ≠ succ n, from
|
|
assume sseqsn : succ s = succ n,
|
|
by rewrite [sseqsn at l₄]; exact (absurd l₄ !lt.irrefl),
|
|
have sslen : s < n, from lt_of_succ_lt_succ (lt_of_le_and_ne sslesn ssnesn),
|
|
assert sseqn : succ s = n, from le.antisymm sslen h₂,
|
|
by rewrite [sqrt_aux_succ_of_pos hl]; exact sseqn)
|
|
(λ hg : ¬ (succ s)*(succ s) ≤ n*n + k,
|
|
or.elim (eq_or_lt_of_le h₂)
|
|
(λ neqss : n = succ s,
|
|
have p : n*n ≤ n*n + k, from !le_add_right,
|
|
have n : ¬ n*n ≤ n*n + k, by rewrite [-neqss at hg]; exact hg,
|
|
absurd p n)
|
|
(λ sgen : succ s > n,
|
|
by rewrite [sqrt_aux_succ_of_neg hg]; exact (sqrt_aux_offset_eq (le_of_lt_succ sgen))))
|
|
|
|
theorem sqrt_offset_eq {n k : nat} : k ≤ n + n → sqrt (n*n + k) = n :=
|
|
assume h,
|
|
have h₁ : n ≤ n*n + k, from le.trans !le_squared !le_add_right,
|
|
sqrt_aux_offset_eq h h₁
|
|
|
|
theorem sqrt_eq (n : nat) : sqrt (n*n) = n :=
|
|
sqrt_offset_eq !zero_le
|
|
|
|
theorem mul_square_cancel {a b : nat} : a*a = b*b → a = b :=
|
|
assume h,
|
|
assert aux : sqrt (a*a) = sqrt (b*b), by rewrite h,
|
|
by rewrite [*sqrt_eq at aux]; exact aux
|
|
end nat
|