lean2/hott/algebra/order.hlean

446 lines
16 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Weak orders "≤", strict orders "<", and structures that include both.
-/
import algebra.binary algebra.priority
open eq eq.ops algebra
-- set_option class.force_new true
variable {A : Type}
/- weak orders -/
namespace algebra
structure weak_order [class] (A : Type) extends has_le A :=
(le_refl : Πa, le a a)
(le_trans : Πa b c, le a b → le b c → le a c)
(le_antisymm : Πa b, le a b → le b a → a = b)
section
variable [s : weak_order A]
include s
definition le.refl [refl] (a : A) : a ≤ a := !weak_order.le_refl
definition le_of_eq {a b : A} (H : a = b) : a ≤ b := H ▸ le.refl a
definition le.trans [trans] {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans
definition ge.trans [trans] {a b c : A} (H1 : a ≥ b) (H2: b ≥ c) : a ≥ c := le.trans H2 H1
definition le.antisymm {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisymm
-- Alternate syntax. (Abbreviations do not migrate well.)
definition eq_of_le_of_ge {a b : A} : a ≤ b → b ≤ a → a = b := !le.antisymm
end
structure linear_weak_order [class] (A : Type) extends weak_order A :=
(le_total : Πa b, le a b ⊎ le b a)
section
variables [linear_weak_order A]
theorem le.total (a b : A) : a ≤ b ⊎ b ≤ a := !linear_weak_order.le_total
theorem le_of_not_ge {a b : A} (H : ¬ a ≥ b) : a ≤ b := sum.resolve_left !le.total H
definition le_by_cases (a b : A) {P : Type} (H1 : a ≤ b → P) (H2 : b ≤ a → P) : P :=
begin
cases (le.total a b) with H H,
{ exact H1 H},
{ exact H2 H}
end
end
/- strict orders -/
structure strict_order [class] (A : Type) extends has_lt A :=
(lt_irrefl : Πa, ¬ lt a a)
(lt_trans : Πa b c, lt a b → lt b c → lt a c)
section
variable [s : strict_order A]
include s
definition lt.irrefl (a : A) : ¬ a < a := !strict_order.lt_irrefl
definition not_lt_self (a : A) : ¬ a < a := !lt.irrefl -- alternate syntax
theorem lt_self_iff_empty (a : A) : a < a ↔ empty :=
iff_empty_intro (lt.irrefl a)
definition lt.trans [trans] {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans
definition gt.trans [trans] {a b c : A} (H1 : a > b) (H2: b > c) : a > c := lt.trans H2 H1
theorem ne_of_lt {a b : A} (lt_ab : a < b) : a ≠ b :=
assume eq_ab : a = b,
show empty, from lt.irrefl b (eq_ab ▸ lt_ab)
theorem ne_of_gt {a b : A} (gt_ab : a > b) : a ≠ b :=
ne.symm (ne_of_lt gt_ab)
theorem lt.asymm {a b : A} (H : a < b) : ¬ b < a :=
assume H1 : b < a, lt.irrefl _ (lt.trans H H1)
theorem not_lt_of_gt {a b : A} (H : a > b) : ¬ a < b := !lt.asymm H -- alternate syntax
end
/- well-founded orders -/
structure wf_strict_order [class] (A : Type) extends strict_order A :=
(wf_rec : ΠP : A → Type, (Πx, (Πy, lt y x → P y) → P x) → Πx, P x)
definition wf.rec_on {A : Type} [s : wf_strict_order A] {P : A → Type}
(x : A) (H : Πx, (Πy, wf_strict_order.lt y x → P y) → P x) : P x :=
wf_strict_order.wf_rec P H x
/- structures with a weak and a strict order -/
structure order_pair [class] (A : Type) extends weak_order A, has_lt A :=
(le_of_lt : Π a b, lt a b → le a b)
(lt_of_lt_of_le : Π a b c, lt a b → le b c → lt a c)
(lt_of_le_of_lt : Π a b c, le a b → lt b c → lt a c)
(lt_irrefl : Π a, ¬ lt a a)
section
variable [s : order_pair A]
variables {a b c : A}
include s
definition le_of_lt : a < b → a ≤ b := !order_pair.le_of_lt
definition lt_of_lt_of_le [trans] : a < b → b ≤ c → a < c := !order_pair.lt_of_lt_of_le
definition lt_of_le_of_lt [trans] : a ≤ b → b < c → a < c := !order_pair.lt_of_le_of_lt
private definition lt_irrefl (s' : order_pair A) (a : A) : ¬ a < a := !order_pair.lt_irrefl
private theorem lt_trans (s' : order_pair A) (a b c: A) (lt_ab : a < b) (lt_bc : b < c) : a < c :=
lt_of_lt_of_le lt_ab (le_of_lt lt_bc)
definition order_pair.to_strict_order [trans_instance] : strict_order A :=
⦃ strict_order, s, lt_irrefl := lt_irrefl s, lt_trans := lt_trans s ⦄
definition gt_of_gt_of_ge [trans] (H1 : a > b) (H2 : b ≥ c) : a > c := lt_of_le_of_lt H2 H1
definition gt_of_ge_of_gt [trans] (H1 : a ≥ b) (H2 : b > c) : a > c := lt_of_lt_of_le H2 H1
theorem not_le_of_gt (H : a > b) : ¬ a ≤ b :=
assume H1 : a ≤ b,
lt.irrefl _ (lt_of_lt_of_le H H1)
theorem not_lt_of_ge (H : a ≥ b) : ¬ a < b :=
assume H1 : a < b,
lt.irrefl _ (lt_of_le_of_lt H H1)
end
structure strong_order_pair [class] (A : Type) extends weak_order A, has_lt A :=
(le_iff_lt_sum_eq : Πa b, le a b ↔ lt a b ⊎ a = b)
(lt_irrefl : Π a, ¬ lt a a)
definition le_iff_lt_sum_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b ⊎ a = b :=
!strong_order_pair.le_iff_lt_sum_eq
theorem lt_sum_eq_of_le [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b ⊎ a = b :=
iff.mp le_iff_lt_sum_eq le_ab
theorem le_of_lt_sum_eq [s : strong_order_pair A] {a b : A} (lt_sum_eq : a < b ⊎ a = b) : a ≤ b :=
iff.mpr le_iff_lt_sum_eq lt_sum_eq
private definition lt_irrefl' [s : strong_order_pair A] (a : A) : ¬ a < a :=
!strong_order_pair.lt_irrefl
private theorem le_of_lt' [s : strong_order_pair A] (a b : A) : a < b → a ≤ b :=
take Hlt, le_of_lt_sum_eq (sum.inl Hlt)
private theorem lt_iff_le_prod_ne [s : strong_order_pair A] {a b : A} : a < b ↔ (a ≤ b × a ≠ b) :=
iff.intro
(take Hlt, pair (le_of_lt_sum_eq (sum.inl Hlt)) (take Hab, absurd (Hab ▸ Hlt) !lt_irrefl'))
(take Hand,
have Hor : a < b ⊎ a = b, from lt_sum_eq_of_le (prod.pr1 Hand),
sum_resolve_left Hor (prod.pr2 Hand))
theorem lt_of_le_of_ne [s : strong_order_pair A] {a b : A} : a ≤ b → a ≠ b → a < b :=
take H1 H2, iff.mpr lt_iff_le_prod_ne (pair H1 H2)
private theorem ne_of_lt' [s : strong_order_pair A] {a b : A} (H : a < b) : a ≠ b :=
prod.pr2 ((iff.mp (@lt_iff_le_prod_ne _ _ _ _)) H)
private theorem lt_of_lt_of_le' [s : strong_order_pair A] (a b c : A) : a < b → b ≤ c → a < c :=
assume lt_ab : a < b,
assume le_bc : b ≤ c,
have le_ac : a ≤ c, from le.trans (le_of_lt' _ _ lt_ab) le_bc,
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
have eq_ab : a = b, from le.antisymm (le_of_lt' _ _ lt_ab) le_ba,
show empty, from ne_of_lt' lt_ab eq_ab,
show a < c, from iff.mpr (lt_iff_le_prod_ne) (pair le_ac ne_ac)
theorem lt_of_le_of_lt' [s : strong_order_pair A] (a b c : A) : a ≤ b → b < c → a < c :=
assume le_ab : a ≤ b,
assume lt_bc : b < c,
have le_ac : a ≤ c, from le.trans le_ab (le_of_lt' _ _ lt_bc),
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_cb : c ≤ b, from eq_ac ▸ le_ab,
have eq_bc : b = c, from le.antisymm (le_of_lt' _ _ lt_bc) le_cb,
show empty, from ne_of_lt' lt_bc eq_bc,
show a < c, from iff.mpr (lt_iff_le_prod_ne) (pair le_ac ne_ac)
definition strong_order_pair.to_order_pair [trans_instance] [s : strong_order_pair A] : order_pair A :=
⦃ order_pair, s,
lt_irrefl := lt_irrefl',
le_of_lt := le_of_lt',
lt_of_le_of_lt := lt_of_le_of_lt',
lt_of_lt_of_le := lt_of_lt_of_le' ⦄
/- linear orders -/
structure linear_order_pair [class] (A : Type) extends order_pair A, linear_weak_order A
structure linear_strong_order_pair [class] (A : Type) extends strong_order_pair A,
linear_weak_order A
definition linear_strong_order_pair.to_linear_order_pair [trans_instance]
[s : linear_strong_order_pair A] : linear_order_pair A :=
⦃ linear_order_pair, s, strong_order_pair.to_order_pair ⦄
section
variable [s : linear_strong_order_pair A]
variables (a b c : A)
include s
theorem lt.trichotomy : a < b ⊎ a = b ⊎ b < a :=
sum.elim (le.total a b)
(assume H : a ≤ b,
sum.elim (iff.mp !le_iff_lt_sum_eq H) (assume H1, sum.inl H1) (assume H1, sum.inr (sum.inl H1)))
(assume H : b ≤ a,
sum.elim (iff.mp !le_iff_lt_sum_eq H)
(assume H1, sum.inr (sum.inr H1))
(assume H1, sum.inr (sum.inl (H1⁻¹))))
definition lt.by_cases {a b : A} {P : Type}
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
sum.elim !lt.trichotomy
(assume H, H1 H)
(assume H, sum.elim H (assume H', H2 H') (assume H', H3 H'))
definition lt_ge_by_cases {a b : A} {P : Type} (H1 : a < b → P) (H2 : a ≥ b → P) : P :=
lt.by_cases H1 (λH, H2 (H ▸ le.refl a)) (λH, H2 (le_of_lt H))
theorem le_of_not_gt {a b : A} (H : ¬ a > b) : a ≤ b :=
lt.by_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H')
theorem lt_of_not_ge {a b : A} (H : ¬ a ≥ b) : a < b :=
lt.by_cases
(assume H', absurd (le_of_lt H') H)
(assume H', absurd (H' ▸ !le.refl) H)
(assume H', H')
theorem lt_sum_ge : a < b ⊎ a ≥ b :=
lt.by_cases
(assume H1 : a < b, sum.inl H1)
(assume H1 : a = b, sum.inr (H1 ▸ le.refl a))
(assume H1 : a > b, sum.inr (le_of_lt H1))
theorem le_sum_gt : a ≤ b ⊎ a > b :=
!sum.swap (lt_sum_ge b a)
theorem lt_sum_gt_of_ne {a b : A} (H : a ≠ b) : a < b ⊎ a > b :=
lt.by_cases (assume H1, sum.inl H1) (assume H1, absurd H1 H) (assume H1, sum.inr H1)
end
open decidable
structure decidable_linear_order [class] (A : Type) extends linear_strong_order_pair A :=
(decidable_lt : decidable_rel lt)
section
variable [s : decidable_linear_order A]
variables {a b c d : A}
include s
open decidable
definition decidable_lt [instance] : decidable (a < b) :=
@decidable_linear_order.decidable_lt _ _ _ _
definition decidable_le [instance] : decidable (a ≤ b) :=
by_cases
(assume H : a < b, inl (le_of_lt H))
(assume H : ¬ a < b,
have H1 : b ≤ a, from le_of_not_gt H,
by_cases
(assume H2 : b < a, inr (not_le_of_gt H2))
(assume H2 : ¬ b < a, inl (le_of_not_gt H2)))
definition has_decidable_eq [instance] : decidable (a = b) :=
by_cases
(assume H : a ≤ b,
by_cases
(assume H1 : b ≤ a, inl (le.antisymm H H1))
(assume H1 : ¬ b ≤ a, inr (assume H2 : a = b, H1 (H2 ▸ le.refl a))))
(assume H : ¬ a ≤ b,
(inr (assume H1 : a = b, H (H1 ▸ !le.refl))))
theorem eq_sum_lt_of_not_lt {a b : A} (H : ¬ a < b) : a = b ⊎ b < a :=
if Heq : a = b then sum.inl Heq else sum.inr (lt_of_not_ge (λ Hge, H (lt_of_le_of_ne Hge Heq)))
theorem eq_sum_lt_of_le {a b : A} (H : a ≤ b) : a = b ⊎ a < b :=
begin
cases eq_sum_lt_of_not_lt (not_lt_of_ge H),
exact sum.inl a_1⁻¹,
exact sum.inr a_1
end
-- testing equality first may result in more definitional equalities
definition lt.cases {B : Type} (a b : A) (t_lt t_eq t_gt : B) : B :=
if a = b then t_eq else (if a < b then t_lt else t_gt)
theorem lt.cases_of_eq {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a = b) :
lt.cases a b t_lt t_eq t_gt = t_eq := if_pos H
theorem lt.cases_of_lt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a < b) :
lt.cases a b t_lt t_eq t_gt = t_lt :=
if_neg (ne_of_lt H) ⬝ if_pos H
theorem lt.cases_of_gt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a > b) :
lt.cases a b t_lt t_eq t_gt = t_gt :=
if_neg (ne.symm (ne_of_lt H)) ⬝ if_neg (lt.asymm H)
definition min (a b : A) : A := if a ≤ b then a else b
definition max (a b : A) : A := if a ≤ b then b else a
/- these show min and max form a lattice -/
theorem min_le_left (a b : A) : min a b ≤ a :=
by_cases
(assume H : a ≤ b, by rewrite [↑min, if_pos H])
(assume H : ¬ a ≤ b, by rewrite [↑min, if_neg H]; apply le_of_lt (lt_of_not_ge H))
theorem min_le_right (a b : A) : min a b ≤ b :=
by_cases
(assume H : a ≤ b, by rewrite [↑min, if_pos H]; apply H)
(assume H : ¬ a ≤ b, by rewrite [↑min, if_neg H])
theorem le_min {a b c : A} (H₁ : c ≤ a) (H₂ : c ≤ b) : c ≤ min a b :=
by_cases
(assume H : a ≤ b, by rewrite [↑min, if_pos H]; apply H₁)
(assume H : ¬ a ≤ b, by rewrite [↑min, if_neg H]; apply H₂)
theorem le_max_left (a b : A) : a ≤ max a b :=
by_cases
(assume H : a ≤ b, by rewrite [↑max, if_pos H]; apply H)
(assume H : ¬ a ≤ b, by rewrite [↑max, if_neg H])
theorem le_max_right (a b : A) : b ≤ max a b :=
by_cases
(assume H : a ≤ b, by rewrite [↑max, if_pos H])
(assume H : ¬ a ≤ b, by rewrite [↑max, if_neg H]; apply le_of_lt (lt_of_not_ge H))
theorem max_le {a b c : A} (H₁ : a ≤ c) (H₂ : b ≤ c) : max a b ≤ c :=
by_cases
(assume H : a ≤ b, by rewrite [↑max, if_pos H]; apply H₂)
(assume H : ¬ a ≤ b, by rewrite [↑max, if_neg H]; apply H₁)
theorem le_max_left_iff_unit (a b : A) : a ≤ max a b ↔ unit :=
iff_unit_intro (le_max_left a b)
theorem le_max_right_iff_unit (a b : A) : b ≤ max a b ↔ unit :=
iff_unit_intro (le_max_right a b)
/- these are also proved for lattices, but with inf and sup in place of min and max -/
theorem eq_min {a b c : A} (H₁ : c ≤ a) (H₂ : c ≤ b) (H₃ : Π{d}, d ≤ a → d ≤ b → d ≤ c) :
c = min a b :=
le.antisymm (le_min H₁ H₂) (H₃ !min_le_left !min_le_right)
theorem min.comm (a b : A) : min a b = min b a :=
eq_min !min_le_right !min_le_left (λ c H₁ H₂, le_min H₂ H₁)
theorem min.assoc (a b c : A) : min (min a b) c = min a (min b c) :=
begin
apply eq_min,
{ apply le.trans, apply min_le_left, apply min_le_left },
{ apply le_min, apply le.trans, apply min_le_left, apply min_le_right, apply min_le_right },
{ intros [d, H₁, H₂], apply le_min, apply le_min H₁, apply le.trans H₂, apply min_le_left,
apply le.trans H₂, apply min_le_right }
end
theorem min.left_comm (a b c : A) : min a (min b c) = min b (min a c) :=
binary.left_comm (@min.comm A s) (@min.assoc A s) a b c
theorem min.right_comm (a b c : A) : min (min a b) c = min (min a c) b :=
binary.right_comm (@min.comm A s) (@min.assoc A s) a b c
theorem min_self (a : A) : min a a = a :=
by apply inverse; apply eq_min (le.refl a) !le.refl; intros; assumption
theorem min_eq_left {a b : A} (H : a ≤ b) : min a b = a :=
by apply inverse; apply eq_min !le.refl H; intros; assumption
theorem min_eq_right {a b : A} (H : b ≤ a) : min a b = b :=
eq.subst !min.comm (min_eq_left H)
theorem eq_max {a b c : A} (H₁ : a ≤ c) (H₂ : b ≤ c) (H₃ : Π{d}, a ≤ d → b ≤ d → c ≤ d) :
c = max a b :=
le.antisymm (H₃ !le_max_left !le_max_right) (max_le H₁ H₂)
theorem max.comm (a b : A) : max a b = max b a :=
eq_max !le_max_right !le_max_left (λ c H₁ H₂, max_le H₂ H₁)
theorem max.assoc (a b c : A) : max (max a b) c = max a (max b c) :=
begin
apply eq_max,
{ apply le.trans, apply le_max_left a b, apply le_max_left },
{ apply max_le, apply le.trans, apply le_max_right a b, apply le_max_left, apply le_max_right },
{ intros [d, H₁, H₂], apply max_le, apply max_le H₁, apply le.trans !le_max_left H₂,
apply le.trans !le_max_right H₂}
end
theorem max.left_comm (a b c : A) : max a (max b c) = max b (max a c) :=
binary.left_comm (@max.comm A s) (@max.assoc A s) a b c
theorem max.right_comm (a b c : A) : max (max a b) c = max (max a c) b :=
binary.right_comm (@max.comm A s) (@max.assoc A s) a b c
theorem max_self (a : A) : max a a = a :=
by apply inverse; apply eq_max (le.refl a) !le.refl; intros; assumption
theorem max_eq_left {a b : A} (H : b ≤ a) : max a b = a :=
by apply inverse; apply eq_max !le.refl H; intros; assumption
theorem max_eq_right {a b : A} (H : a ≤ b) : max a b = b :=
eq.subst !max.comm (max_eq_left H)
/- these rely on lt_of_lt -/
theorem min_eq_left_of_lt {a b : A} (H : a < b) : min a b = a :=
min_eq_left (le_of_lt H)
theorem min_eq_right_of_lt {a b : A} (H : b < a) : min a b = b :=
min_eq_right (le_of_lt H)
theorem max_eq_left_of_lt {a b : A} (H : b < a) : max a b = a :=
max_eq_left (le_of_lt H)
theorem max_eq_right_of_lt {a b : A} (H : a < b) : max a b = b :=
max_eq_right (le_of_lt H)
/- these use the fact that it is a linear ordering -/
theorem lt_min {a b c : A} (H₁ : a < b) (H₂ : a < c) : a < min b c :=
sum.elim !le_sum_gt
(assume H : b ≤ c, by rewrite (min_eq_left H); apply H₁)
(assume H : b > c, by rewrite (min_eq_right_of_lt H); apply H₂)
theorem max_lt {a b c : A} (H₁ : a < c) (H₂ : b < c) : max a b < c :=
sum.elim !le_sum_gt
(assume H : a ≤ b, by rewrite (max_eq_right H); apply H₂)
(assume H : a > b, by rewrite (max_eq_left_of_lt H); apply H₁)
end
end algebra