682 lines
26 KiB
Text
682 lines
26 KiB
Text
/-
|
||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn, Jeremy Avigad
|
||
|
||
The integers, with addition, multiplication, and subtraction. The representation of the integers is
|
||
chosen to compute efficiently.
|
||
|
||
To faciliate proving things about these operations, we show that the integers are a quotient of
|
||
ℕ × ℕ with the usual equivalence relation, ≡, and functions
|
||
|
||
abstr : ℕ × ℕ → ℤ
|
||
repr : ℤ → ℕ × ℕ
|
||
|
||
satisfying:
|
||
|
||
abstr_repr (a : ℤ) : abstr (repr a) = a
|
||
repr_abstr (p : ℕ × ℕ) : repr (abstr p) ≡ p
|
||
abstr_eq (p q : ℕ × ℕ) : p ≡ q → abstr p = abstr q
|
||
|
||
For example, to "lift" statements about add to statements about padd, we need to prove the
|
||
following:
|
||
|
||
repr_add (a b : ℤ) : repr (a + b) = padd (repr a) (repr b)
|
||
padd_congr (p p' q q' : ℕ × ℕ) (H1 : p ≡ p') (H2 : q ≡ q') : padd p q ≡ p' q'
|
||
|
||
-/
|
||
import data.nat.basic data.nat.order data.nat.sub data.prod
|
||
import algebra.relation algebra.binary algebra.ordered_ring
|
||
open eq.ops
|
||
open prod relation nat
|
||
open decidable binary
|
||
|
||
/- the type of integers -/
|
||
|
||
inductive int : Type :=
|
||
| of_nat : nat → int
|
||
| neg_succ_of_nat : nat → int
|
||
|
||
notation `ℤ` := int
|
||
definition int.of_num [coercion] [reducible] [constructor] (n : num) : ℤ :=
|
||
int.of_nat (nat.of_num n)
|
||
|
||
namespace int
|
||
|
||
attribute int.of_nat [coercion]
|
||
|
||
/- definitions of basic functions -/
|
||
|
||
definition neg_of_nat (m : ℕ) : ℤ :=
|
||
nat.cases_on m 0 (take m', neg_succ_of_nat m')
|
||
|
||
definition sub_nat_nat (m n : ℕ) : ℤ :=
|
||
nat.cases_on (n - m)
|
||
(of_nat (m - n)) -- m ≥ n
|
||
(take k, neg_succ_of_nat k) -- m < n, and n - m = succ k
|
||
|
||
definition neg (a : ℤ) : ℤ :=
|
||
int.cases_on a
|
||
(take m, -- a = of_nat m
|
||
nat.cases_on m 0 (take m', neg_succ_of_nat m'))
|
||
(take m, of_nat (succ m)) -- a = neg_succ_of_nat m
|
||
|
||
definition add (a b : ℤ) : ℤ :=
|
||
int.cases_on a
|
||
(take m, -- a = of_nat m
|
||
int.cases_on b
|
||
(take n, of_nat (m + n)) -- b = of_nat n
|
||
(take n, sub_nat_nat m (succ n))) -- b = neg_succ_of_nat n
|
||
(take m, -- a = neg_succ_of_nat m
|
||
int.cases_on b
|
||
(take n, sub_nat_nat n (succ m)) -- b = of_nat n
|
||
(take n, neg_of_nat (succ m + succ n))) -- b = neg_succ_of_nat n
|
||
|
||
definition mul (a b : ℤ) : ℤ :=
|
||
int.cases_on a
|
||
(take m, -- a = of_nat m
|
||
int.cases_on b
|
||
(take n, of_nat (m * n)) -- b = of_nat n
|
||
(take n, neg_of_nat (m * succ n))) -- b = neg_succ_of_nat n
|
||
(take m, -- a = neg_succ_of_nat m
|
||
int.cases_on b
|
||
(take n, neg_of_nat (succ m * n)) -- b = of_nat n
|
||
(take n, of_nat (succ m * succ n))) -- b = neg_succ_of_nat n
|
||
|
||
/- notation -/
|
||
|
||
protected definition prio : num := num.pred std.priority.default
|
||
|
||
notation `-[1+` n `]` := int.neg_succ_of_nat n -- for pretty-printing output
|
||
prefix [priority int.prio] - := int.neg
|
||
infix [priority int.prio] + := int.add
|
||
infix [priority int.prio] * := int.mul
|
||
|
||
/- some basic functions and properties -/
|
||
|
||
theorem of_nat.inj {m n : ℕ} (H : of_nat m = of_nat n) : m = n :=
|
||
by injection H; assumption
|
||
|
||
theorem of_nat_eq_of_nat (m n : ℕ) : of_nat m = of_nat n ↔ m = n :=
|
||
iff.intro of_nat.inj !congr_arg
|
||
|
||
theorem neg_succ_of_nat.inj {m n : ℕ} (H : neg_succ_of_nat m = neg_succ_of_nat n) : m = n :=
|
||
by injection H; assumption
|
||
|
||
theorem neg_succ_of_nat_eq (n : ℕ) : -[1+ n] = -(n + 1) := rfl
|
||
|
||
definition has_decidable_eq [instance] : decidable_eq ℤ :=
|
||
take a b,
|
||
int.cases_on a
|
||
(take m,
|
||
int.cases_on b
|
||
(take n,
|
||
if H : m = n then inl (congr_arg of_nat H) else inr (take H1, H (of_nat.inj H1)))
|
||
(take n', inr (by contradiction)))
|
||
(take m',
|
||
int.cases_on b
|
||
(take n, inr (by contradiction))
|
||
(take n',
|
||
(if H : m' = n' then inl (congr_arg neg_succ_of_nat H) else
|
||
inr (take H1, H (neg_succ_of_nat.inj H1)))))
|
||
|
||
theorem of_nat_add (n m : nat) : of_nat (n + m) = of_nat n + of_nat m := rfl
|
||
|
||
theorem of_nat_succ (n : ℕ) : of_nat (succ n) = of_nat n + 1 := rfl
|
||
|
||
theorem of_nat_mul (n m : ℕ) : of_nat (n * m) = of_nat n * of_nat m := rfl
|
||
|
||
theorem sub_nat_nat_of_ge {m n : ℕ} (H : m ≥ n) : sub_nat_nat m n = of_nat (m - n) :=
|
||
have H1 : n - m = 0, from sub_eq_zero_of_le H,
|
||
calc
|
||
sub_nat_nat m n = nat.cases_on 0 (of_nat (m - n)) _ : H1 ▸ rfl
|
||
... = of_nat (m - n) : rfl
|
||
|
||
section
|
||
local attribute sub_nat_nat [reducible]
|
||
theorem sub_nat_nat_of_lt {m n : ℕ} (H : m < n) :
|
||
sub_nat_nat m n = neg_succ_of_nat (pred (n - m)) :=
|
||
have H1 : n - m = succ (pred (n - m)), from (succ_pred_of_pos (sub_pos_of_lt H))⁻¹,
|
||
calc
|
||
sub_nat_nat m n = nat.cases_on (succ (pred (n - m))) (of_nat (m - n))
|
||
(take k, neg_succ_of_nat k) : H1 ▸ rfl
|
||
... = neg_succ_of_nat (pred (n - m)) : rfl
|
||
end
|
||
|
||
definition nat_abs (a : ℤ) : ℕ := int.cases_on a (take n, n) (take n', succ n')
|
||
|
||
theorem nat_abs_of_nat (n : ℕ) : nat_abs (of_nat n) = n := rfl
|
||
|
||
theorem nat_abs_eq_zero {a : ℤ} : nat_abs a = 0 → a = 0 :=
|
||
int.cases_on a
|
||
(take m, suppose nat_abs (of_nat m) = 0, congr_arg of_nat this)
|
||
(take m', suppose nat_abs (neg_succ_of_nat m') = 0, absurd this (succ_ne_zero _))
|
||
|
||
/- int is a quotient of ordered pairs of natural numbers -/
|
||
|
||
protected definition equiv (p q : ℕ × ℕ) : Prop := pr1 p + pr2 q = pr2 p + pr1 q
|
||
|
||
local infix `≡` := int.equiv
|
||
|
||
protected theorem equiv.refl [refl] {p : ℕ × ℕ} : p ≡ p := !add.comm
|
||
|
||
protected theorem equiv.symm [symm] {p q : ℕ × ℕ} (H : p ≡ q) : q ≡ p :=
|
||
calc
|
||
pr1 q + pr2 p = pr2 p + pr1 q : !add.comm
|
||
... = pr1 p + pr2 q : H⁻¹
|
||
... = pr2 q + pr1 p : !add.comm
|
||
|
||
protected theorem equiv.trans [trans] {p q r : ℕ × ℕ} (H1 : p ≡ q) (H2 : q ≡ r) : p ≡ r :=
|
||
have H3 : pr1 p + pr2 r + pr2 q = pr2 p + pr1 r + pr2 q, from
|
||
calc
|
||
pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : by simp
|
||
... = pr2 p + pr1 q + pr2 r : {H1}
|
||
... = pr2 p + (pr1 q + pr2 r) : by simp
|
||
... = pr2 p + (pr2 q + pr1 r) : {H2}
|
||
... = pr2 p + pr1 r + pr2 q : by simp,
|
||
show pr1 p + pr2 r = pr2 p + pr1 r, from add.cancel_right H3
|
||
|
||
protected theorem equiv_equiv : is_equivalence int.equiv :=
|
||
is_equivalence.mk @equiv.refl @equiv.symm @equiv.trans
|
||
|
||
protected theorem equiv_cases {p q : ℕ × ℕ} (H : int.equiv p q) :
|
||
(pr1 p ≥ pr2 p ∧ pr1 q ≥ pr2 q) ∨ (pr1 p < pr2 p ∧ pr1 q < pr2 q) :=
|
||
or.elim (@le_or_gt (pr2 p) (pr1 p))
|
||
(suppose pr1 p ≥ pr2 p,
|
||
have pr2 p + pr1 q ≥ pr2 p + pr2 q, from H ▸ add_le_add_right this (pr2 q),
|
||
or.inl (and.intro `pr1 p ≥ pr2 p` (le_of_add_le_add_left this)))
|
||
(suppose pr1 p < pr2 p,
|
||
have pr2 p + pr1 q < pr2 p + pr2 q, from H ▸ add_lt_add_right this (pr2 q),
|
||
or.inr (and.intro `pr1 p < pr2 p` (lt_of_add_lt_add_left this)))
|
||
|
||
protected theorem equiv_of_eq {p q : ℕ × ℕ} (H : p = q) : p ≡ q := H ▸ equiv.refl
|
||
|
||
/- the representation and abstraction functions -/
|
||
|
||
definition abstr (a : ℕ × ℕ) : ℤ := sub_nat_nat (pr1 a) (pr2 a)
|
||
|
||
theorem abstr_of_ge {p : ℕ × ℕ} (H : pr1 p ≥ pr2 p) : abstr p = of_nat (pr1 p - pr2 p) :=
|
||
sub_nat_nat_of_ge H
|
||
|
||
theorem abstr_of_lt {p : ℕ × ℕ} (H : pr1 p < pr2 p) :
|
||
abstr p = neg_succ_of_nat (pred (pr2 p - pr1 p)) :=
|
||
sub_nat_nat_of_lt H
|
||
|
||
definition repr (a : ℤ) : ℕ × ℕ := int.cases_on a (take m, (m, 0)) (take m, (0, succ m))
|
||
|
||
theorem abstr_repr (a : ℤ) : abstr (repr a) = a :=
|
||
int.cases_on a (take m, (sub_nat_nat_of_ge (zero_le m))) (take m, rfl)
|
||
|
||
theorem repr_sub_nat_nat (m n : ℕ) : repr (sub_nat_nat m n) ≡ (m, n) :=
|
||
or.elim (@le_or_gt n m)
|
||
(suppose m ≥ n,
|
||
have repr (sub_nat_nat m n) = (m - n, 0), from sub_nat_nat_of_ge this ▸ rfl,
|
||
this⁻¹ ▸
|
||
(calc
|
||
m - n + n = m : sub_add_cancel `m ≥ n`
|
||
... = 0 + m : zero_add))
|
||
(suppose H : m < n,
|
||
have repr (sub_nat_nat m n) = (0, succ (pred (n - m))), from sub_nat_nat_of_lt H ▸ rfl,
|
||
this⁻¹ ▸
|
||
(calc
|
||
0 + n = n : zero_add
|
||
... = n - m + m : sub_add_cancel (le_of_lt H)
|
||
... = succ (pred (n - m)) + m : (succ_pred_of_pos (sub_pos_of_lt H))⁻¹))
|
||
|
||
theorem repr_abstr (p : ℕ × ℕ) : repr (abstr p) ≡ p :=
|
||
!prod.eta ▸ !repr_sub_nat_nat
|
||
|
||
theorem abstr_eq {p q : ℕ × ℕ} (Hequiv : p ≡ q) : abstr p = abstr q :=
|
||
or.elim (int.equiv_cases Hequiv)
|
||
(assume H2,
|
||
have H3 : pr1 p ≥ pr2 p, from and.elim_left H2,
|
||
have H4 : pr1 q ≥ pr2 q, from and.elim_right H2,
|
||
have H5 : pr1 p = pr1 q - pr2 q + pr2 p, from
|
||
calc
|
||
pr1 p = pr1 p + pr2 q - pr2 q : add_sub_cancel
|
||
... = pr2 p + pr1 q - pr2 q : Hequiv
|
||
... = pr2 p + (pr1 q - pr2 q) : add_sub_assoc H4
|
||
... = pr1 q - pr2 q + pr2 p : add.comm,
|
||
have H6 : pr1 p - pr2 p = pr1 q - pr2 q, from
|
||
calc
|
||
pr1 p - pr2 p = pr1 q - pr2 q + pr2 p - pr2 p : H5
|
||
... = pr1 q - pr2 q : add_sub_cancel,
|
||
abstr_of_ge H3 ⬝ congr_arg of_nat H6 ⬝ (abstr_of_ge H4)⁻¹)
|
||
(assume H2,
|
||
have H3 : pr1 p < pr2 p, from and.elim_left H2,
|
||
have H4 : pr1 q < pr2 q, from and.elim_right H2,
|
||
have H5 : pr2 p = pr2 q - pr1 q + pr1 p, from
|
||
calc
|
||
pr2 p = pr2 p + pr1 q - pr1 q : add_sub_cancel
|
||
... = pr1 p + pr2 q - pr1 q : Hequiv
|
||
... = pr1 p + (pr2 q - pr1 q) : add_sub_assoc (le_of_lt H4)
|
||
... = pr2 q - pr1 q + pr1 p : add.comm,
|
||
have H6 : pr2 p - pr1 p = pr2 q - pr1 q, from
|
||
calc
|
||
pr2 p - pr1 p = pr2 q - pr1 q + pr1 p - pr1 p : H5
|
||
... = pr2 q - pr1 q : add_sub_cancel,
|
||
abstr_of_lt H3 ⬝ congr_arg neg_succ_of_nat (congr_arg pred H6)⬝ (abstr_of_lt H4)⁻¹)
|
||
|
||
theorem equiv_iff (p q : ℕ × ℕ) : (p ≡ q) ↔ ((p ≡ p) ∧ (q ≡ q) ∧ (abstr p = abstr q)) :=
|
||
iff.intro
|
||
(assume H : int.equiv p q,
|
||
and.intro !equiv.refl (and.intro !equiv.refl (abstr_eq H)))
|
||
(assume H : int.equiv p p ∧ int.equiv q q ∧ abstr p = abstr q,
|
||
have H1 : abstr p = abstr q, from and.elim_right (and.elim_right H),
|
||
equiv.trans (H1 ▸ equiv.symm (repr_abstr p)) (repr_abstr q))
|
||
|
||
theorem eq_abstr_of_equiv_repr {a : ℤ} {p : ℕ × ℕ} (Hequiv : repr a ≡ p) : a = abstr p :=
|
||
calc
|
||
a = abstr (repr a) : abstr_repr
|
||
... = abstr p : abstr_eq Hequiv
|
||
|
||
theorem eq_of_repr_equiv_repr {a b : ℤ} (H : repr a ≡ repr b) : a = b :=
|
||
calc
|
||
a = abstr (repr a) : abstr_repr
|
||
... = abstr (repr b) : abstr_eq H
|
||
... = b : abstr_repr
|
||
|
||
section
|
||
local attribute abstr [reducible]
|
||
local attribute dist [reducible]
|
||
theorem nat_abs_abstr (p : ℕ × ℕ) : nat_abs (abstr p) = dist (pr1 p) (pr2 p) :=
|
||
let m := pr1 p, n := pr2 p in
|
||
or.elim (@le_or_gt n m)
|
||
(assume H : m ≥ n,
|
||
calc
|
||
nat_abs (abstr (m, n)) = nat_abs (of_nat (m - n)) : int.abstr_of_ge H
|
||
... = dist m n : dist_eq_sub_of_ge H)
|
||
(assume H : m < n,
|
||
calc
|
||
nat_abs (abstr (m, n)) = nat_abs (neg_succ_of_nat (pred (n - m))) : int.abstr_of_lt H
|
||
... = succ (pred (n - m)) : rfl
|
||
... = n - m : succ_pred_of_pos (sub_pos_of_lt H)
|
||
... = dist m n : dist_eq_sub_of_le (le_of_lt H))
|
||
end
|
||
|
||
theorem cases_of_nat (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - of_nat n) :=
|
||
int.cases_on a
|
||
(take n, or.inl (exists.intro n rfl))
|
||
(take n', or.inr (exists.intro (succ n') rfl))
|
||
|
||
theorem cases_of_nat_succ (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - (of_nat (succ n))) :=
|
||
int.cases_on a (take m, or.inl (exists.intro _ rfl)) (take m, or.inr (exists.intro _ rfl))
|
||
|
||
theorem by_cases_of_nat {P : ℤ → Prop} (a : ℤ)
|
||
(H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (- of_nat n)) :
|
||
P a :=
|
||
or.elim (cases_of_nat a)
|
||
(assume H, obtain (n : ℕ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
|
||
(assume H, obtain (n : ℕ) (H3 : a = -n), from H, H3⁻¹ ▸ H2 n)
|
||
|
||
theorem by_cases_of_nat_succ {P : ℤ → Prop} (a : ℤ)
|
||
(H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (- of_nat (succ n))) :
|
||
P a :=
|
||
or.elim (cases_of_nat_succ a)
|
||
(assume H, obtain (n : ℕ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
|
||
(assume H, obtain (n : ℕ) (H3 : a = -(succ n)), from H, H3⁻¹ ▸ H2 n)
|
||
|
||
/-
|
||
int is a ring
|
||
-/
|
||
|
||
/- addition -/
|
||
|
||
definition padd (p q : ℕ × ℕ) : ℕ × ℕ := (pr1 p + pr1 q, pr2 p + pr2 q)
|
||
|
||
theorem repr_add (a b : ℤ) : repr (add a b) ≡ padd (repr a) (repr b) :=
|
||
int.cases_on a
|
||
(take m,
|
||
int.cases_on b
|
||
(take n, !equiv.refl)
|
||
(take n',
|
||
have H1 : int.equiv (repr (add (of_nat m) (neg_succ_of_nat n'))) (m, succ n'),
|
||
from !repr_sub_nat_nat,
|
||
have H2 : padd (repr (of_nat m)) (repr (neg_succ_of_nat n')) = (m, 0 + succ n'),
|
||
from rfl,
|
||
(!zero_add ▸ H2)⁻¹ ▸ H1))
|
||
(take m',
|
||
int.cases_on b
|
||
(take n,
|
||
have H1 : int.equiv (repr (add (neg_succ_of_nat m') (of_nat n))) (n, succ m'),
|
||
from !repr_sub_nat_nat,
|
||
have H2 : padd (repr (neg_succ_of_nat m')) (repr (of_nat n)) = (0 + n, succ m'),
|
||
from rfl,
|
||
(!zero_add ▸ H2)⁻¹ ▸ H1)
|
||
(take n',!repr_sub_nat_nat))
|
||
|
||
theorem padd_congr {p p' q q' : ℕ × ℕ} (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' :=
|
||
calc
|
||
pr1 (padd p q) + pr2 (padd p' q') = pr1 p + pr2 p' + (pr1 q + pr2 q') : by simp
|
||
... = pr2 p + pr1 p' + (pr1 q + pr2 q') : {Ha}
|
||
... = pr2 p + pr1 p' + (pr2 q + pr1 q') : {Hb}
|
||
... = pr2 (padd p q) + pr1 (padd p' q') : by simp
|
||
|
||
theorem padd_comm (p q : ℕ × ℕ) : padd p q = padd q p :=
|
||
calc
|
||
padd p q = (pr1 p + pr1 q, pr2 p + pr2 q) : rfl
|
||
... = (pr1 q + pr1 p, pr2 p + pr2 q) : add.comm
|
||
... = (pr1 q + pr1 p, pr2 q + pr2 p) : add.comm
|
||
... = padd q p : rfl
|
||
|
||
theorem padd_assoc (p q r : ℕ × ℕ) : padd (padd p q) r = padd p (padd q r) :=
|
||
calc
|
||
padd (padd p q) r = (pr1 p + pr1 q + pr1 r, pr2 p + pr2 q + pr2 r) : rfl
|
||
... = (pr1 p + (pr1 q + pr1 r), pr2 p + pr2 q + pr2 r) : add.assoc
|
||
... = (pr1 p + (pr1 q + pr1 r), pr2 p + (pr2 q + pr2 r)) : add.assoc
|
||
... = padd p (padd q r) : rfl
|
||
|
||
theorem add.comm (a b : ℤ) : a + b = b + a :=
|
||
begin
|
||
apply eq_of_repr_equiv_repr,
|
||
apply equiv.trans,
|
||
apply repr_add,
|
||
apply equiv.symm,
|
||
apply eq.subst (padd_comm (repr b) (repr a)),
|
||
apply repr_add
|
||
end
|
||
|
||
theorem add.assoc (a b c : ℤ) : a + b + c = a + (b + c) :=
|
||
assert H1 : repr (a + b + c) ≡ padd (padd (repr a) (repr b)) (repr c), from
|
||
equiv.trans (repr_add (a + b) c) (padd_congr !repr_add !equiv.refl),
|
||
assert H2 : repr (a + (b + c)) ≡ padd (repr a) (padd (repr b) (repr c)), from
|
||
equiv.trans (repr_add a (b + c)) (padd_congr !equiv.refl !repr_add),
|
||
begin
|
||
apply eq_of_repr_equiv_repr,
|
||
apply equiv.trans,
|
||
apply H1,
|
||
apply eq.subst (padd_assoc _ _ _)⁻¹,
|
||
apply equiv.symm,
|
||
apply H2
|
||
end
|
||
|
||
theorem add_zero (a : ℤ) : a + 0 = a := int.cases_on a (take m, rfl) (take m', rfl)
|
||
|
||
theorem zero_add (a : ℤ) : 0 + a = a := add.comm a 0 ▸ add_zero a
|
||
|
||
/- negation -/
|
||
|
||
definition pneg (p : ℕ × ℕ) : ℕ × ℕ := (pr2 p, pr1 p)
|
||
|
||
-- note: this is =, not just ≡
|
||
theorem repr_neg (a : ℤ) : repr (- a) = pneg (repr a) :=
|
||
int.cases_on a
|
||
(take m,
|
||
nat.cases_on m rfl (take m', rfl))
|
||
(take m', rfl)
|
||
|
||
theorem pneg_congr {p p' : ℕ × ℕ} (H : p ≡ p') : pneg p ≡ pneg p' := eq.symm H
|
||
|
||
theorem pneg_pneg (p : ℕ × ℕ) : pneg (pneg p) = p := !prod.eta
|
||
|
||
theorem nat_abs_neg (a : ℤ) : nat_abs (-a) = nat_abs a :=
|
||
calc
|
||
nat_abs (-a) = nat_abs (abstr (repr (-a))) : abstr_repr
|
||
... = nat_abs (abstr (pneg (repr a))) : repr_neg
|
||
... = dist (pr1 (pneg (repr a))) (pr2 (pneg (repr a))) : nat_abs_abstr
|
||
... = dist (pr2 (pneg (repr a))) (pr1 (pneg (repr a))) : dist.comm
|
||
... = nat_abs (abstr (repr a)) : nat_abs_abstr
|
||
... = nat_abs a : abstr_repr
|
||
|
||
theorem padd_pneg (p : ℕ × ℕ) : padd p (pneg p) ≡ (0, 0) :=
|
||
show pr1 p + pr2 p + 0 = pr2 p + pr1 p + 0, from !nat.add.comm ▸ rfl
|
||
|
||
theorem padd_padd_pneg (p q : ℕ × ℕ) : padd (padd p q) (pneg q) ≡ p :=
|
||
show pr1 p + pr1 q + pr2 q + pr2 p = pr2 p + pr2 q + pr1 q + pr1 p, from by simp
|
||
|
||
theorem add.left_inv (a : ℤ) : -a + a = 0 :=
|
||
have H : repr (-a + a) ≡ repr 0, from
|
||
calc
|
||
repr (-a + a) ≡ padd (repr (neg a)) (repr a) : repr_add
|
||
... = padd (pneg (repr a)) (repr a) : repr_neg
|
||
... ≡ repr 0 : padd_pneg,
|
||
eq_of_repr_equiv_repr H
|
||
|
||
/- nat abs -/
|
||
|
||
definition pabs (p : ℕ × ℕ) : ℕ := dist (pr1 p) (pr2 p)
|
||
|
||
theorem pabs_congr {p q : ℕ × ℕ} (H : p ≡ q) : pabs p = pabs q :=
|
||
calc
|
||
pabs p = nat_abs (abstr p) : nat_abs_abstr
|
||
... = nat_abs (abstr q) : abstr_eq H
|
||
... = pabs q : nat_abs_abstr
|
||
|
||
theorem nat_abs_eq_pabs_repr (a : ℤ) : nat_abs a = pabs (repr a) :=
|
||
calc
|
||
nat_abs a = nat_abs (abstr (repr a)) : abstr_repr
|
||
... = pabs (repr a) : nat_abs_abstr
|
||
|
||
theorem nat_abs_add_le (a b : ℤ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b :=
|
||
have H : nat_abs (a + b) = pabs (padd (repr a) (repr b)), from
|
||
calc
|
||
nat_abs (a + b) = pabs (repr (a + b)) : nat_abs_eq_pabs_repr
|
||
... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add,
|
||
have H1 : nat_abs a = pabs (repr a), from !nat_abs_eq_pabs_repr,
|
||
have H2 : nat_abs b = pabs (repr b), from !nat_abs_eq_pabs_repr,
|
||
have H3 : pabs (padd (repr a) (repr b)) ≤ pabs (repr a) + pabs (repr b),
|
||
from !dist_add_add_le_add_dist_dist,
|
||
H⁻¹ ▸ H1⁻¹ ▸ H2⁻¹ ▸ H3
|
||
|
||
section
|
||
local attribute nat_abs [reducible]
|
||
theorem nat_abs_mul (a b : ℤ) : nat_abs (a * b) = #nat (nat_abs a) * (nat_abs b) :=
|
||
int.cases_on a
|
||
(take m,
|
||
int.cases_on b
|
||
(take n, rfl)
|
||
(take n', !nat_abs_neg ▸ rfl))
|
||
(take m',
|
||
int.cases_on b
|
||
(take n, !nat_abs_neg ▸ rfl)
|
||
(take n', rfl))
|
||
end
|
||
|
||
/- multiplication -/
|
||
|
||
definition pmul (p q : ℕ × ℕ) : ℕ × ℕ :=
|
||
(pr1 p * pr1 q + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q)
|
||
|
||
theorem repr_neg_of_nat (m : ℕ) : repr (neg_of_nat m) = (0, m) :=
|
||
nat.cases_on m rfl (take m', rfl)
|
||
|
||
-- note: we have =, not just ≡
|
||
theorem repr_mul (a b : ℤ) : repr (mul a b) = pmul (repr a) (repr b) :=
|
||
int.cases_on a
|
||
(take m,
|
||
int.cases_on b
|
||
(take n,
|
||
(calc
|
||
pmul (repr m) (repr n) = (m * n + 0 * 0, m * 0 + 0 * n) : rfl
|
||
... = (m * n + 0 * 0, m * 0 + 0) : zero_mul)⁻¹)
|
||
(take n',
|
||
(calc
|
||
pmul (repr m) (repr (neg_succ_of_nat n')) =
|
||
(m * 0 + 0 * succ n', m * succ n' + 0 * 0) : rfl
|
||
... = (m * 0 + 0, m * succ n' + 0 * 0) : zero_mul
|
||
... = repr (mul m (neg_succ_of_nat n')) : repr_neg_of_nat)⁻¹))
|
||
(take m',
|
||
int.cases_on b
|
||
(take n,
|
||
(calc
|
||
pmul (repr (neg_succ_of_nat m')) (repr n) =
|
||
(0 * n + succ m' * 0, 0 * 0 + succ m' * n) : rfl
|
||
... = (0 + succ m' * 0, 0 * 0 + succ m' * n) : zero_mul
|
||
... = (0 + succ m' * 0, succ m' * n) : {!nat.zero_add}
|
||
... = repr (mul (neg_succ_of_nat m') n) : repr_neg_of_nat)⁻¹)
|
||
(take n',
|
||
(calc
|
||
pmul (repr (neg_succ_of_nat m')) (repr (neg_succ_of_nat n')) =
|
||
(0 + succ m' * succ n', 0 * succ n') : rfl
|
||
... = (succ m' * succ n', 0 * succ n') : nat.zero_add
|
||
... = (succ m' * succ n', 0) : zero_mul
|
||
... = repr (mul (neg_succ_of_nat m') (neg_succ_of_nat n')) : rfl)⁻¹))
|
||
|
||
theorem equiv_mul_prep {xa ya xb yb xn yn xm ym : ℕ}
|
||
(H1 : xa + yb = ya + xb) (H2 : xn + ym = yn + xm)
|
||
: xa * xn + ya * yn + (xb * ym + yb * xm) = xa * yn + ya * xn + (xb * xm + yb * ym) :=
|
||
have H3 : xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
||
= xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn)), from
|
||
calc
|
||
xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
||
= xa * xn + yb * xn + (ya * yn + xb * yn) + (xb * xn + xb * ym + (yb * yn + yb * xm))
|
||
: by simp
|
||
... = (xa + yb) * xn + (ya + xb) * yn + (xb * (xn + ym) + yb * (yn + xm)) : by simp
|
||
... = (ya + xb) * xn + (xa + yb) * yn + (xb * (yn + xm) + yb * (xn + ym)) : by simp
|
||
... = ya * xn + xb * xn + (xa * yn + yb * yn) + (xb * yn + xb * xm + (yb*xn + yb*ym))
|
||
: by simp
|
||
... = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
||
: by simp,
|
||
nat.add.cancel_right H3
|
||
|
||
theorem pmul_congr {p p' q q' : ℕ × ℕ} (H1 : p ≡ p') (H2 : q ≡ q') : pmul p q ≡ pmul p' q' :=
|
||
equiv_mul_prep H1 H2
|
||
|
||
theorem pmul_comm (p q : ℕ × ℕ) : pmul p q = pmul q p :=
|
||
calc
|
||
(pr1 p * pr1 q + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q) =
|
||
(pr1 q * pr1 p + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q) : mul.comm
|
||
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr1 p * pr2 q + pr2 p * pr1 q) : mul.comm
|
||
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr2 q * pr1 p + pr2 p * pr1 q) : mul.comm
|
||
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr2 q * pr1 p + pr1 q * pr2 p) : mul.comm
|
||
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr1 q * pr2 p + pr2 q * pr1 p) : nat.add.comm
|
||
|
||
theorem mul.comm (a b : ℤ) : a * b = b * a :=
|
||
eq_of_repr_equiv_repr
|
||
((calc
|
||
repr (a * b) = pmul (repr a) (repr b) : repr_mul
|
||
... = pmul (repr b) (repr a) : pmul_comm
|
||
... = repr (b * a) : repr_mul) ▸ !equiv.refl)
|
||
|
||
theorem pmul_assoc (p q r: ℕ × ℕ) : pmul (pmul p q) r = pmul p (pmul q r) :=
|
||
by simp
|
||
|
||
theorem mul.assoc (a b c : ℤ) : (a * b) * c = a * (b * c) :=
|
||
eq_of_repr_equiv_repr
|
||
((calc
|
||
repr (a * b * c) = pmul (repr (a * b)) (repr c) : repr_mul
|
||
... = pmul (pmul (repr a) (repr b)) (repr c) : repr_mul
|
||
... = pmul (repr a) (pmul (repr b) (repr c)) : pmul_assoc
|
||
... = pmul (repr a) (repr (b * c)) : repr_mul
|
||
... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl)
|
||
|
||
theorem mul_one (a : ℤ) : a * 1 = a :=
|
||
eq_of_repr_equiv_repr (int.equiv_of_eq
|
||
((calc
|
||
repr (a * 1) = pmul (repr a) (repr 1) : repr_mul
|
||
... = (pr1 (repr a), pr2 (repr a)) : by simp
|
||
... = repr a : prod.eta)))
|
||
|
||
theorem one_mul (a : ℤ) : 1 * a = a :=
|
||
mul.comm a 1 ▸ mul_one a
|
||
|
||
theorem mul.right_distrib (a b c : ℤ) : (a + b) * c = a * c + b * c :=
|
||
eq_of_repr_equiv_repr
|
||
(calc
|
||
repr ((a + b) * c) = pmul (repr (a + b)) (repr c) : repr_mul
|
||
... ≡ pmul (padd (repr a) (repr b)) (repr c) : pmul_congr !repr_add equiv.refl
|
||
... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : by simp
|
||
... = padd (repr (a * c)) (pmul (repr b) (repr c)) : {(repr_mul a c)⁻¹}
|
||
... = padd (repr (a * c)) (repr (b * c)) : repr_mul
|
||
... ≡ repr (a * c + b * c) : equiv.symm !repr_add)
|
||
|
||
theorem mul.left_distrib (a b c : ℤ) : a * (b + c) = a * b + a * c :=
|
||
calc
|
||
a * (b + c) = (b + c) * a : mul.comm a (b + c)
|
||
... = b * a + c * a : mul.right_distrib b c a
|
||
... = a * b + c * a : {mul.comm b a}
|
||
... = a * b + a * c : {mul.comm c a}
|
||
|
||
theorem zero_ne_one : (0 : int) ≠ 1 :=
|
||
assume H : 0 = 1,
|
||
show false, from succ_ne_zero 0 ((of_nat.inj H)⁻¹)
|
||
|
||
theorem eq_zero_or_eq_zero_of_mul_eq_zero {a b : ℤ} (H : a * b = 0) : a = 0 ∨ b = 0 :=
|
||
have H2 : (nat_abs a) * (nat_abs b) = nat.zero, from
|
||
calc
|
||
(nat_abs a) * (nat_abs b) = (nat_abs (a * b)) : (nat_abs_mul a b)⁻¹
|
||
... = (nat_abs 0) : {H}
|
||
... = nat.zero : nat_abs_of_nat nat.zero,
|
||
have H3 : (nat_abs a) = nat.zero ∨ (nat_abs b) = nat.zero,
|
||
from eq_zero_or_eq_zero_of_mul_eq_zero H2,
|
||
or_of_or_of_imp_of_imp H3
|
||
(assume H : (nat_abs a) = nat.zero, nat_abs_eq_zero H)
|
||
(assume H : (nat_abs b) = nat.zero, nat_abs_eq_zero H)
|
||
|
||
section migrate_algebra
|
||
open [classes] algebra
|
||
|
||
protected definition integral_domain [reducible] : algebra.integral_domain int :=
|
||
⦃algebra.integral_domain,
|
||
add := add,
|
||
add_assoc := add.assoc,
|
||
zero := zero,
|
||
zero_add := zero_add,
|
||
add_zero := add_zero,
|
||
neg := neg,
|
||
add_left_inv := add.left_inv,
|
||
add_comm := add.comm,
|
||
mul := mul,
|
||
mul_assoc := mul.assoc,
|
||
one := (of_num 1),
|
||
one_mul := one_mul,
|
||
mul_one := mul_one,
|
||
left_distrib := mul.left_distrib,
|
||
right_distrib := mul.right_distrib,
|
||
mul_comm := mul.comm,
|
||
eq_zero_or_eq_zero_of_mul_eq_zero := @eq_zero_or_eq_zero_of_mul_eq_zero⦄
|
||
|
||
local attribute int.integral_domain [instance]
|
||
definition sub (a b : ℤ) : ℤ := algebra.sub a b
|
||
infix [priority int.prio] - := int.sub
|
||
definition dvd (a b : ℤ) : Prop := algebra.dvd a b
|
||
notation [priority int.prio] a ∣ b := dvd a b
|
||
|
||
migrate from algebra with int
|
||
replacing sub → sub, dvd → dvd
|
||
end migrate_algebra
|
||
|
||
/- additional properties -/
|
||
|
||
theorem of_nat_sub {m n : ℕ} (H : #nat m ≥ n) : of_nat (#nat m - n) = of_nat m - of_nat n :=
|
||
have H1 : m = (#nat m - n + n), from (nat.sub_add_cancel H)⁻¹,
|
||
have H2 : m = (#nat m - n) + n, from congr_arg of_nat H1,
|
||
(sub_eq_of_eq_add H2)⁻¹
|
||
|
||
theorem neg_succ_of_nat_eq' (m : ℕ) : -[1+ m] = -m - 1 :=
|
||
by rewrite [neg_succ_of_nat_eq, of_nat_add, neg_add]
|
||
|
||
definition succ (a : ℤ) := a + (nat.succ zero)
|
||
definition pred (a : ℤ) := a - (nat.succ zero)
|
||
theorem pred_succ (a : ℤ) : pred (succ a) = a := !sub_add_cancel
|
||
theorem succ_pred (a : ℤ) : succ (pred a) = a := !add_sub_cancel
|
||
theorem neg_succ (a : ℤ) : -succ a = pred (-a) :=
|
||
by rewrite [↑succ,neg_add]
|
||
theorem succ_neg_succ (a : ℤ) : succ (-succ a) = -a :=
|
||
by rewrite [neg_succ,succ_pred]
|
||
theorem neg_pred (a : ℤ) : -pred a = succ (-a) :=
|
||
by rewrite [↑pred,neg_sub,sub_eq_add_neg,add.comm]
|
||
theorem pred_neg_pred (a : ℤ) : pred (-pred a) = -a :=
|
||
by rewrite [neg_pred,pred_succ]
|
||
|
||
theorem pred_nat_succ (n : ℕ) : pred (nat.succ n) = n := pred_succ n
|
||
theorem neg_nat_succ (n : ℕ) : -nat.succ n = pred (-n) := !neg_succ
|
||
theorem succ_neg_nat_succ (n : ℕ) : succ (-nat.succ n) = -n := !succ_neg_succ
|
||
|
||
definition rec_nat_on [unfold 2] {P : ℤ → Type} (z : ℤ) (H0 : P 0)
|
||
(Hsucc : Π⦃n : ℕ⦄, P n → P (succ n)) (Hpred : Π⦃n : ℕ⦄, P (-n) → P (-nat.succ n)) : P z :=
|
||
begin
|
||
induction z with n n,
|
||
{exact nat.rec_on n H0 Hsucc},
|
||
{induction n with m ih,
|
||
exact Hpred H0,
|
||
exact Hpred ih}
|
||
end
|
||
|
||
--the only computation rule of rec_nat_on which is not definitional
|
||
theorem rec_nat_on_neg {P : ℤ → Type} (n : nat) (H0 : P zero)
|
||
(Hsucc : Π⦃n : nat⦄, P n → P (succ n)) (Hpred : Π⦃n : nat⦄, P (-n) → P (-nat.succ n))
|
||
: rec_nat_on (-nat.succ n) H0 Hsucc Hpred = Hpred (rec_nat_on (-n) H0 Hsucc Hpred) :=
|
||
nat.rec_on n rfl (λn H, rfl)
|
||
|
||
end int
|