647 lines
24 KiB
Text
647 lines
24 KiB
Text
/-
|
||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: init.path
|
||
Authors: Jeremy Avigad, Jakob von Raumer, Floris van Doorn
|
||
|
||
Ported from Coq HoTT
|
||
-/
|
||
|
||
prelude
|
||
import .function .datatypes .relation .tactic
|
||
|
||
open function eq
|
||
|
||
/- Path equality -/
|
||
|
||
namespace eq
|
||
variables {A B C : Type} {P : A → Type} {x y z t : A}
|
||
|
||
--notation a = b := eq a b
|
||
notation x = y `:>`:50 A:49 := @eq A x y
|
||
definition idp {a : A} := refl a
|
||
definition idpath (a : A) := refl a
|
||
|
||
-- unbased path induction
|
||
definition rec' [reducible] {P : Π (a b : A), (a = b) -> Type}
|
||
(H : Π (a : A), P a a idp) {a b : A} (p : a = b) : P a b p :=
|
||
eq.rec (H a) p
|
||
|
||
definition rec_on' [reducible] {P : Π (a b : A), (a = b) -> Type} {a b : A} (p : a = b)
|
||
(H : Π (a : A), P a a idp) : P a b p :=
|
||
eq.rec (H a) p
|
||
|
||
/- Concatenation and inverse -/
|
||
|
||
definition concat (p : x = y) (q : y = z) : x = z :=
|
||
eq.rec (λu, u) q p
|
||
|
||
definition inverse (p : x = y) : y = x :=
|
||
eq.rec (refl x) p
|
||
|
||
infix ⬝ := concat
|
||
postfix ⁻¹ := inverse
|
||
--a second notation for the inverse, which is not overloaded
|
||
postfix [parsing-only] `⁻¹ᵖ`:std.prec.max_plus := inverse
|
||
|
||
|
||
/- The 1-dimensional groupoid structure -/
|
||
|
||
-- The identity path is a right unit.
|
||
definition con_idp (p : x = y) : p ⬝ idp = p :=
|
||
eq.rec_on p idp
|
||
|
||
-- The identity path is a right unit.
|
||
definition idp_con (p : x = y) : idp ⬝ p = p :=
|
||
eq.rec_on p idp
|
||
|
||
-- Concatenation is associative.
|
||
definition con.assoc' (p : x = y) (q : y = z) (r : z = t) :
|
||
p ⬝ (q ⬝ r) = (p ⬝ q) ⬝ r :=
|
||
eq.rec_on r (eq.rec_on q idp)
|
||
|
||
definition con.assoc (p : x = y) (q : y = z) (r : z = t) :
|
||
(p ⬝ q) ⬝ r = p ⬝ (q ⬝ r) :=
|
||
eq.rec_on r (eq.rec_on q idp)
|
||
|
||
-- The left inverse law.
|
||
definition con.right_inv (p : x = y) : p ⬝ p⁻¹ = idp :=
|
||
eq.rec_on p idp
|
||
|
||
-- The right inverse law.
|
||
definition con.left_inv (p : x = y) : p⁻¹ ⬝ p = idp :=
|
||
eq.rec_on p idp
|
||
|
||
/- Several auxiliary theorems about canceling inverses across associativity. These are somewhat
|
||
redundant, following from earlier theorems. -/
|
||
|
||
definition inv_con_cancel_left (p : x = y) (q : y = z) : p⁻¹ ⬝ (p ⬝ q) = q :=
|
||
eq.rec_on q (eq.rec_on p idp)
|
||
|
||
definition con_inv_cancel_left (p : x = y) (q : x = z) : p ⬝ (p⁻¹ ⬝ q) = q :=
|
||
eq.rec_on q (eq.rec_on p idp)
|
||
|
||
definition con_inv_cancel_right (p : x = y) (q : y = z) : (p ⬝ q) ⬝ q⁻¹ = p :=
|
||
eq.rec_on q (eq.rec_on p idp)
|
||
|
||
definition inv_con_cancel_right (p : x = z) (q : y = z) : (p ⬝ q⁻¹) ⬝ q = p :=
|
||
eq.rec_on q (take p, eq.rec_on p idp) p
|
||
|
||
-- Inverse distributes over concatenation
|
||
definition con_inv (p : x = y) (q : y = z) : (p ⬝ q)⁻¹ = q⁻¹ ⬝ p⁻¹ :=
|
||
eq.rec_on q (eq.rec_on p idp)
|
||
|
||
definition inv_con_inv_left (p : y = x) (q : y = z) : (p⁻¹ ⬝ q)⁻¹ = q⁻¹ ⬝ p :=
|
||
eq.rec_on q (eq.rec_on p idp)
|
||
|
||
-- universe metavariables
|
||
definition inv_con_inv_right (p : x = y) (q : z = y) : (p ⬝ q⁻¹)⁻¹ = q ⬝ p⁻¹ :=
|
||
eq.rec_on p (take q, eq.rec_on q idp) q
|
||
|
||
definition inv_con_inv_inv (p : y = x) (q : z = y) : (p⁻¹ ⬝ q⁻¹)⁻¹ = q ⬝ p :=
|
||
eq.rec_on p (eq.rec_on q idp)
|
||
|
||
-- Inverse is an involution.
|
||
definition inv_inv (p : x = y) : p⁻¹⁻¹ = p :=
|
||
eq.rec_on p idp
|
||
|
||
-- auxiliary definition used by 'cases' tactic
|
||
definition elim_inv_inv {A : Type} {a b : A} {C : a = b → Type} (H₁ : a = b) (H₂ : C (H₁⁻¹⁻¹)) : C H₁ :=
|
||
eq.rec_on (inv_inv H₁) H₂
|
||
|
||
/- Theorems for moving things around in equations -/
|
||
|
||
definition con_eq_of_eq_inv_con {p : x = z} {q : y = z} {r : y = x} :
|
||
p = r⁻¹ ⬝ q → r ⬝ p = q :=
|
||
eq.rec_on r (take p h, !idp_con ⬝ h ⬝ !idp_con) p
|
||
|
||
definition con_eq_of_eq_con_inv {p : x = z} {q : y = z} {r : y = x} :
|
||
r = q ⬝ p⁻¹ → r ⬝ p = q :=
|
||
eq.rec_on p (take q h, (!con_idp ⬝ h ⬝ !con_idp)) q
|
||
|
||
definition inv_con_eq_of_eq_con {p : x = z} {q : y = z} {r : x = y} :
|
||
p = r ⬝ q → r⁻¹ ⬝ p = q :=
|
||
eq.rec_on r (take q h, !idp_con ⬝ h ⬝ !idp_con) q
|
||
|
||
definition con_inv_eq_of_eq_con {p : z = x} {q : y = z} {r : y = x} :
|
||
r = q ⬝ p → r ⬝ p⁻¹ = q :=
|
||
eq.rec_on p (take r h, !con_idp ⬝ h ⬝ !con_idp) r
|
||
|
||
definition eq_con_of_inv_con_eq {p : x = z} {q : y = z} {r : y = x} :
|
||
r⁻¹ ⬝ q = p → q = r ⬝ p :=
|
||
eq.rec_on r (take p h, !idp_con⁻¹ ⬝ h ⬝ !idp_con⁻¹) p
|
||
|
||
definition eq_con_of_con_inv_eq {p : x = z} {q : y = z} {r : y = x} :
|
||
q ⬝ p⁻¹ = r → q = r ⬝ p :=
|
||
eq.rec_on p (take q h, !con_idp⁻¹ ⬝ h ⬝ !con_idp⁻¹) q
|
||
|
||
definition eq_inv_con_of_con_eq {p : x = z} {q : y = z} {r : x = y} :
|
||
r ⬝ q = p → q = r⁻¹ ⬝ p :=
|
||
eq.rec_on r (take q h, !idp_con⁻¹ ⬝ h ⬝ !idp_con⁻¹) q
|
||
|
||
definition eq_con_inv_of_con_eq {p : z = x} {q : y = z} {r : y = x} :
|
||
q ⬝ p = r → q = r ⬝ p⁻¹ :=
|
||
eq.rec_on p (take r h, !con_idp⁻¹ ⬝ h ⬝ !con_idp⁻¹) r
|
||
|
||
definition eq_of_con_inv_eq_idp {p q : x = y} :
|
||
p ⬝ q⁻¹ = idp → p = q :=
|
||
eq.rec_on q (take p h, !con_idp⁻¹ ⬝ h) p
|
||
|
||
definition eq_of_inv_con_eq_idp {p q : x = y} :
|
||
q⁻¹ ⬝ p = idp → p = q :=
|
||
eq.rec_on q (take p h, !idp_con⁻¹ ⬝ h) p
|
||
|
||
definition eq_inv_of_con_eq_idp' {p : x = y} {q : y = x} :
|
||
p ⬝ q = idp → p = q⁻¹ :=
|
||
eq.rec_on q (take p h, !con_idp⁻¹ ⬝ h) p
|
||
|
||
definition eq_inv_of_con_eq_idp {p : x = y} {q : y = x} :
|
||
q ⬝ p = idp → p = q⁻¹ :=
|
||
eq.rec_on q (take p h, !idp_con⁻¹ ⬝ h) p
|
||
|
||
definition eq_of_idp_eq_inv_con {p q : x = y} :
|
||
idp = p⁻¹ ⬝ q → p = q :=
|
||
eq.rec_on p (take q h, h ⬝ !idp_con) q
|
||
|
||
definition eq_of_idp_eq_con_inv {p q : x = y} :
|
||
idp = q ⬝ p⁻¹ → p = q :=
|
||
eq.rec_on p (take q h, h ⬝ !con_idp) q
|
||
|
||
definition inv_eq_of_idp_eq_con {p : x = y} {q : y = x} :
|
||
idp = q ⬝ p → p⁻¹ = q :=
|
||
eq.rec_on p (take q h, h ⬝ !con_idp) q
|
||
|
||
definition inv_eq_of_idp_eq_con' {p : x = y} {q : y = x} :
|
||
idp = p ⬝ q → p⁻¹ = q :=
|
||
eq.rec_on p (take q h, h ⬝ !idp_con) q
|
||
|
||
/- Transport -/
|
||
|
||
definition transport [reducible] (P : A → Type) {x y : A} (p : x = y) (u : P x) : P y :=
|
||
eq.rec_on p u
|
||
|
||
-- This idiom makes the operation right associative.
|
||
notation p `▹`:65 x:64 := transport _ p x
|
||
|
||
definition cast [reducible] {A B : Type} (p : A = B) (a : A) : B :=
|
||
p ▹ a
|
||
|
||
definition tr_inv [reducible] (P : A → Type) {x y : A} (p : x = y) (u : P y) : P x :=
|
||
p⁻¹ ▹ u
|
||
|
||
definition ap ⦃A B : Type⦄ (f : A → B) {x y:A} (p : x = y) : f x = f y :=
|
||
eq.rec_on p idp
|
||
|
||
abbreviation ap01 [parsing-only] := ap
|
||
|
||
definition homotopy [reducible] (f g : Πx, P x) : Type :=
|
||
Πx : A, f x = g x
|
||
|
||
notation f ∼ g := homotopy f g
|
||
|
||
namespace homotopy
|
||
protected definition refl (f : Πx, P x) : f ∼ f :=
|
||
λ x, idp
|
||
|
||
protected definition symm {f g : Πx, P x} (H : f ∼ g) : g ∼ f :=
|
||
λ x, inverse (H x)
|
||
|
||
protected definition trans {f g h : Πx, P x} (H1 : f ∼ g) (H2 : g ∼ h) : f ∼ h :=
|
||
λ x, concat (H1 x) (H2 x)
|
||
|
||
calc_refl refl
|
||
calc_symm symm
|
||
calc_trans trans
|
||
end homotopy
|
||
|
||
definition apd10 {f g : Πx, P x} (H : f = g) : f ∼ g :=
|
||
λx, eq.rec_on H idp
|
||
|
||
--the next theorem is useful if you want to write "apply (apd10' a)"
|
||
definition apd10' {f g : Πx, P x} (a : A) (H : f = g) : f a = g a :=
|
||
eq.rec_on H idp
|
||
|
||
definition ap10 [reducible] {f g : A → B} (H : f = g) : f ∼ g := apd10 H
|
||
|
||
definition ap11 {f g : A → B} (H : f = g) {x y : A} (p : x = y) : f x = g y :=
|
||
eq.rec_on H (eq.rec_on p idp)
|
||
|
||
definition apd (f : Πa:A, P a) {x y : A} (p : x = y) : p ▹ (f x) = f y :=
|
||
eq.rec_on p idp
|
||
|
||
/- calc enviroment -/
|
||
|
||
calc_subst transport
|
||
calc_trans concat
|
||
calc_refl refl
|
||
calc_symm inverse
|
||
|
||
/- More theorems for moving things around in equations -/
|
||
|
||
definition tr_eq_of_eq_inv_tr (P : A → Type) {x y : A} {p : x = y} {u : P x} {v : P y} :
|
||
u = p⁻¹ ▹ v → p ▹ u = v :=
|
||
eq.rec_on p (take v, id) v
|
||
|
||
definition inv_tr_eq_of_eq_tr (P : A → Type) {x y : A} {p : y = x} {u : P x} {v : P y} :
|
||
u = p ▹ v → p⁻¹ ▹ u = v :=
|
||
eq.rec_on p (take u, id) u
|
||
|
||
definition eq_inv_tr_of_tr_eq (P : A → Type) {x y : A} {p : x = y} {u : P x} {v : P y} :
|
||
p ▹ u = v → u = p⁻¹ ▹ v :=
|
||
eq.rec_on p (take v, id) v
|
||
|
||
definition eq_tr_of_inv_tr_eq (P : A → Type) {x y : A} {p : y = x} {u : P x} {v : P y} :
|
||
p⁻¹ ▹ u = v → u = p ▹ v :=
|
||
eq.rec_on p (take u, id) u
|
||
|
||
/- Functoriality of functions -/
|
||
|
||
-- Here we prove that functions behave like functors between groupoids, and that [ap] itself is
|
||
-- functorial.
|
||
|
||
-- Functions take identity paths to identity paths
|
||
definition ap_idp (x : A) (f : A → B) : ap f idp = idp :> (f x = f x) := idp
|
||
definition apd_idp (x : A) (f : Πx, P x) : apd f idp = idp :> (f x = f x) := idp
|
||
|
||
-- Functions commute with concatenation.
|
||
definition ap_con (f : A → B) {x y z : A} (p : x = y) (q : y = z) :
|
||
ap f (p ⬝ q) = (ap f p) ⬝ (ap f q) :=
|
||
eq.rec_on q (eq.rec_on p idp)
|
||
|
||
definition con_ap_con_eq_con_ap_con_ap (f : A → B) {w x y z : A} (r : f w = f x) (p : x = y) (q : y = z) :
|
||
r ⬝ (ap f (p ⬝ q)) = (r ⬝ ap f p) ⬝ (ap f q) :=
|
||
eq.rec_on q (take p, eq.rec_on p (con.assoc' r idp idp)) p
|
||
|
||
definition ap_con_con_eq_ap_con_ap_con (f : A → B) {w x y z : A} (p : x = y) (q : y = z) (r : f z = f w) :
|
||
(ap f (p ⬝ q)) ⬝ r = (ap f p) ⬝ (ap f q ⬝ r) :=
|
||
eq.rec_on q (eq.rec_on p (take r, con.assoc _ _ _)) r
|
||
|
||
-- Functions commute with path inverses.
|
||
definition ap_inv' (f : A → B) {x y : A} (p : x = y) : (ap f p)⁻¹ = ap f p⁻¹ :=
|
||
eq.rec_on p idp
|
||
|
||
definition ap_inv {A B : Type} (f : A → B) {x y : A} (p : x = y) : ap f p⁻¹ = (ap f p)⁻¹ :=
|
||
eq.rec_on p idp
|
||
|
||
-- [ap] itself is functorial in the first argument.
|
||
|
||
definition ap_id (p : x = y) : ap id p = p :=
|
||
eq.rec_on p idp
|
||
|
||
definition ap_compose (f : A → B) (g : B → C) {x y : A} (p : x = y) :
|
||
ap (g ∘ f) p = ap g (ap f p) :=
|
||
eq.rec_on p idp
|
||
|
||
-- Sometimes we don't have the actual function [compose].
|
||
definition ap_compose' (f : A → B) (g : B → C) {x y : A} (p : x = y) :
|
||
ap (λa, g (f a)) p = ap g (ap f p) :=
|
||
eq.rec_on p idp
|
||
|
||
-- The action of constant maps.
|
||
definition ap_constant (p : x = y) (z : B) : ap (λu, z) p = idp :=
|
||
eq.rec_on p idp
|
||
|
||
-- Naturality of [ap].
|
||
definition ap_con_eq_con_ap {f g : A → B} (p : f ∼ g) {x y : A} (q : x = y) :
|
||
ap f q ⬝ p y = p x ⬝ ap g q :=
|
||
eq.rec_on q (!idp_con ⬝ !con_idp⁻¹)
|
||
|
||
-- Naturality of [ap] at identity.
|
||
definition ap_con_eq_con {f : A → A} (p : Πx, f x = x) {x y : A} (q : x = y) :
|
||
ap f q ⬝ p y = p x ⬝ q :=
|
||
eq.rec_on q (!idp_con ⬝ !con_idp⁻¹)
|
||
|
||
definition con_ap_eq_con {f : A → A} (p : Πx, x = f x) {x y : A} (q : x = y) :
|
||
p x ⬝ ap f q = q ⬝ p y :=
|
||
eq.rec_on q (!con_idp ⬝ !idp_con⁻¹)
|
||
|
||
-- Naturality with other paths hanging around.
|
||
|
||
definition con_ap_con_con_eq_con_con_ap_con {f g : A → B} (p : f ∼ g) {x y : A} (q : x = y)
|
||
{w z : B} (r : w = f x) (s : g y = z) :
|
||
(r ⬝ ap f q) ⬝ (p y ⬝ s) = (r ⬝ p x) ⬝ (ap g q ⬝ s) :=
|
||
eq.rec_on s (eq.rec_on q idp)
|
||
|
||
definition con_ap_con_eq_con_con_ap {f g : A → B} (p : f ∼ g) {x y : A} (q : x = y)
|
||
{w : B} (r : w = f x) :
|
||
(r ⬝ ap f q) ⬝ p y = (r ⬝ p x) ⬝ ap g q :=
|
||
eq.rec_on q idp
|
||
|
||
-- TODO: try this using the simplifier, and compare proofs
|
||
definition ap_con_con_eq_con_ap_con {f g : A → B} (p : f ∼ g) {x y : A} (q : x = y)
|
||
{z : B} (s : g y = z) :
|
||
ap f q ⬝ (p y ⬝ s) = p x ⬝ (ap g q ⬝ s) :=
|
||
eq.rec_on s (eq.rec_on q
|
||
(calc
|
||
(ap f idp) ⬝ (p x ⬝ idp) = idp ⬝ p x : idp
|
||
... = p x : !idp_con
|
||
... = (p x) ⬝ (ap g idp ⬝ idp) : idp))
|
||
-- This also works:
|
||
-- eq.rec_on s (eq.rec_on q (!idp_con ▹ idp))
|
||
|
||
definition con_ap_con_con_eq_con_con_con {f : A → A} (p : f ∼ id) {x y : A} (q : x = y)
|
||
{w z : A} (r : w = f x) (s : y = z) :
|
||
(r ⬝ ap f q) ⬝ (p y ⬝ s) = (r ⬝ p x) ⬝ (q ⬝ s) :=
|
||
eq.rec_on s (eq.rec_on q idp)
|
||
|
||
definition con_con_ap_con_eq_con_con_con {g : A → A} (p : id ∼ g) {x y : A} (q : x = y)
|
||
{w z : A} (r : w = x) (s : g y = z) :
|
||
(r ⬝ p x) ⬝ (ap g q ⬝ s) = (r ⬝ q) ⬝ (p y ⬝ s) :=
|
||
eq.rec_on s (eq.rec_on q idp)
|
||
|
||
definition con_ap_con_eq_con_con {f : A → A} (p : f ∼ id) {x y : A} (q : x = y)
|
||
{w : A} (r : w = f x) :
|
||
(r ⬝ ap f q) ⬝ p y = (r ⬝ p x) ⬝ q :=
|
||
eq.rec_on q idp
|
||
|
||
definition ap_con_con_eq_con_con {f : A → A} (p : f ∼ id) {x y : A} (q : x = y)
|
||
{z : A} (s : y = z) :
|
||
ap f q ⬝ (p y ⬝ s) = p x ⬝ (q ⬝ s) :=
|
||
eq.rec_on s (eq.rec_on q (!idp_con ▹ idp))
|
||
|
||
definition con_con_ap_eq_con_con {g : A → A} (p : id ∼ g) {x y : A} (q : x = y)
|
||
{w : A} (r : w = x) :
|
||
(r ⬝ p x) ⬝ ap g q = (r ⬝ q) ⬝ p y :=
|
||
begin cases q, exact idp end
|
||
|
||
definition con_ap_con_eq_con_con' {g : A → A} (p : id ∼ g) {x y : A} (q : x = y)
|
||
{z : A} (s : g y = z) :
|
||
p x ⬝ (ap g q ⬝ s) = q ⬝ (p y ⬝ s) :=
|
||
begin
|
||
apply (eq.rec_on s),
|
||
apply (eq.rec_on q),
|
||
apply (idp_con (p x) ▹ idp)
|
||
end
|
||
|
||
/- Action of [apd10] and [ap10] on paths -/
|
||
|
||
-- Application of paths between functions preserves the groupoid structure
|
||
|
||
definition apd10_idp (f : Πx, P x) (x : A) : apd10 (refl f) x = idp := idp
|
||
|
||
definition apd10_con {f f' f'' : Πx, P x} (h : f = f') (h' : f' = f'') (x : A) :
|
||
apd10 (h ⬝ h') x = apd10 h x ⬝ apd10 h' x :=
|
||
eq.rec_on h (take h', eq.rec_on h' idp) h'
|
||
|
||
definition apd10_inv {f g : Πx : A, P x} (h : f = g) (x : A) :
|
||
apd10 h⁻¹ x = (apd10 h x)⁻¹ :=
|
||
eq.rec_on h idp
|
||
|
||
definition ap10_idp {f : A → B} (x : A) : ap10 (refl f) x = idp := idp
|
||
|
||
definition ap10_con {f f' f'' : A → B} (h : f = f') (h' : f' = f'') (x : A) :
|
||
ap10 (h ⬝ h') x = ap10 h x ⬝ ap10 h' x := apd10_con h h' x
|
||
|
||
definition ap10_inv {f g : A → B} (h : f = g) (x : A) : ap10 h⁻¹ x = (ap10 h x)⁻¹ :=
|
||
apd10_inv h x
|
||
|
||
-- [ap10] also behaves nicely on paths produced by [ap]
|
||
definition ap_ap10 (f g : A → B) (h : B → C) (p : f = g) (a : A) :
|
||
ap h (ap10 p a) = ap10 (ap (λ f', h ∘ f') p) a:=
|
||
eq.rec_on p idp
|
||
|
||
|
||
/- Transport and the groupoid structure of paths -/
|
||
|
||
definition tr_idp (P : A → Type) {x : A} (u : P x) : idp ▹ u = u := idp
|
||
|
||
definition tr_con (P : A → Type) {x y z : A} (p : x = y) (q : y = z) (u : P x) :
|
||
p ⬝ q ▹ u = q ▹ p ▹ u :=
|
||
eq.rec_on q (eq.rec_on p idp)
|
||
|
||
definition tr_inv_tr (P : A → Type) {x y : A} (p : x = y) (z : P y) :
|
||
p ▹ p⁻¹ ▹ z = z :=
|
||
(tr_con P p⁻¹ p z)⁻¹ ⬝ ap (λr, transport P r z) (con.left_inv p)
|
||
|
||
definition inv_tr_tr (P : A → Type) {x y : A} (p : x = y) (z : P x) :
|
||
p⁻¹ ▹ p ▹ z = z :=
|
||
(tr_con P p p⁻¹ z)⁻¹ ⬝ ap (λr, transport P r z) (con.right_inv p)
|
||
|
||
definition tr_con_lemma (P : A → Type)
|
||
{x y z w : A} (p : x = y) (q : y = z) (r : z = w) (u : P x) :
|
||
ap (λe, e ▹ u) (con.assoc' p q r) ⬝ (tr_con P (p ⬝ q) r u) ⬝
|
||
ap (transport P r) (tr_con P p q u)
|
||
= (tr_con P p (q ⬝ r) u) ⬝ (tr_con P q r (p ▹ u))
|
||
:> ((p ⬝ (q ⬝ r)) ▹ u = r ▹ q ▹ p ▹ u) :=
|
||
eq.rec_on r (eq.rec_on q (eq.rec_on p idp))
|
||
|
||
-- Here is another coherence lemma for transport.
|
||
definition tr_inv_tr_lemma (P : A → Type) {x y : A} (p : x = y) (z : P x) :
|
||
tr_inv_tr P p (transport P p z) = ap (transport P p) (inv_tr_tr P p z) :=
|
||
eq.rec_on p idp
|
||
|
||
-- Dependent transport in a doubly dependent type.
|
||
definition transportD {P : A → Type} (Q : Π a : A, P a → Type)
|
||
{a a' : A} (p : a = a') (b : P a) (z : Q a b) : Q a' (p ▹ b) :=
|
||
eq.rec_on p z
|
||
|
||
-- In Coq the variables P, Q and b are explicit, but in Lean we can probably have them implicit using the following notation
|
||
notation p `▹D`:65 x:64 := transportD _ p _ x
|
||
|
||
-- Transporting along higher-dimensional paths
|
||
definition transport2 (P : A → Type) {x y : A} {p q : x = y} (r : p = q) (z : P x) :
|
||
p ▹ z = q ▹ z :=
|
||
ap (λp', p' ▹ z) r
|
||
|
||
notation p `▹2`:65 x:64 := transport2 _ p _ x
|
||
|
||
-- An alternative definition.
|
||
definition tr2_eq_ap10 (Q : A → Type) {x y : A} {p q : x = y} (r : p = q)
|
||
(z : Q x) :
|
||
transport2 Q r z = ap10 (ap (transport Q) r) z :=
|
||
eq.rec_on r idp
|
||
|
||
definition tr2_con (P : A → Type) {x y : A} {p1 p2 p3 : x = y}
|
||
(r1 : p1 = p2) (r2 : p2 = p3) (z : P x) :
|
||
transport2 P (r1 ⬝ r2) z = transport2 P r1 z ⬝ transport2 P r2 z :=
|
||
eq.rec_on r1 (eq.rec_on r2 idp)
|
||
|
||
definition tr2_inv (Q : A → Type) {x y : A} {p q : x = y} (r : p = q) (z : Q x) :
|
||
transport2 Q r⁻¹ z = (transport2 Q r z)⁻¹ :=
|
||
eq.rec_on r idp
|
||
|
||
definition transportD2 (B C : A → Type) (D : Π(a:A), B a → C a → Type)
|
||
{x1 x2 : A} (p : x1 = x2) (y : B x1) (z : C x1) (w : D x1 y z) : D x2 (p ▹ y) (p ▹ z) :=
|
||
eq.rec_on p w
|
||
|
||
notation p `▹D2`:65 x:64 := transportD2 _ _ _ p _ _ x
|
||
|
||
definition ap_tr_con_tr2 (P : A → Type) {x y : A} {p q : x = y} {z w : P x} (r : p = q)
|
||
(s : z = w) :
|
||
ap (transport P p) s ⬝ transport2 P r w = transport2 P r z ⬝ ap (transport P q) s :=
|
||
eq.rec_on r (!con_idp ⬝ !idp_con⁻¹)
|
||
|
||
|
||
definition fn_tr_eq_tr_fn {P Q : A → Type} {x y : A} (p : x = y) (f : Πx, P x → Q x) (z : P x) :
|
||
f y (p ▹ z) = (p ▹ (f x z)) :=
|
||
eq.rec_on p idp
|
||
|
||
/- Transporting in particular fibrations -/
|
||
|
||
/-
|
||
From the Coq HoTT library:
|
||
|
||
One frequently needs lemmas showing that transport in a certain dependent type is equal to some
|
||
more explicitly defined operation, defined according to the structure of that dependent type.
|
||
For most dependent types, we prove these lemmas in the appropriate file in the types/
|
||
subdirectory. Here we consider only the most basic cases.
|
||
-/
|
||
|
||
-- Transporting in a constant fibration.
|
||
definition tr_constant (p : x = y) (z : B) : transport (λx, B) p z = z :=
|
||
eq.rec_on p idp
|
||
|
||
definition tr2_constant {p q : x = y} (r : p = q) (z : B) :
|
||
tr_constant p z = transport2 (λu, B) r z ⬝ tr_constant q z :=
|
||
eq.rec_on r !idp_con⁻¹
|
||
|
||
-- Transporting in a pulled back fibration.
|
||
-- rename: tr_compose
|
||
definition transport_compose (P : B → Type) (f : A → B) (p : x = y) (z : P (f x)) :
|
||
transport (P ∘ f) p z = transport P (ap f p) z :=
|
||
eq.rec_on p idp
|
||
|
||
definition ap_precompose (f : A → B) (g g' : B → C) (p : g = g') :
|
||
ap (λh, h ∘ f) p = transport (λh : B → C, g ∘ f = h ∘ f) p idp :=
|
||
eq.rec_on p idp
|
||
|
||
definition apd10_ap_precompose (f : A → B) (g g' : B → C) (p : g = g') (a : A) :
|
||
apd10 (ap (λh : B → C, h ∘ f) p) a = apd10 p (f a) :=
|
||
eq.rec_on p idp
|
||
|
||
definition apd10_ap_postcompose (f : B → C) (g g' : A → B) (p : g = g') (a : A) :
|
||
apd10 (ap (λh : A → B, f ∘ h) p) a = ap f (apd10 p a) :=
|
||
eq.rec_on p idp
|
||
|
||
-- A special case of [transport_compose] which seems to come up a lot.
|
||
definition tr_eq_cast_ap (P : A → Type) {x y} (p : x = y) (u : P x) : p ▹ u = cast (ap P p) u :=
|
||
eq.rec_on p idp
|
||
|
||
|
||
/- The behavior of [ap] and [apd] -/
|
||
|
||
-- In a constant fibration, [apd] reduces to [ap], modulo [transport_const].
|
||
definition apd_eq_tr_constant_con_ap (f : A → B) (p : x = y) :
|
||
apd f p = tr_constant p (f x) ⬝ ap f p :=
|
||
eq.rec_on p idp
|
||
|
||
|
||
/- The 2-dimensional groupoid structure -/
|
||
|
||
-- Horizontal composition of 2-dimensional paths.
|
||
definition concat2 {p p' : x = y} {q q' : y = z} (h : p = p') (h' : q = q') : p ⬝ q = p' ⬝ q' :=
|
||
eq.rec_on h (eq.rec_on h' idp)
|
||
|
||
infixl `◾`:75 := concat2
|
||
|
||
-- 2-dimensional path inversion
|
||
definition inverse2 {p q : x = y} (h : p = q) : p⁻¹ = q⁻¹ :=
|
||
eq.rec_on h idp
|
||
|
||
|
||
/- Whiskering -/
|
||
|
||
definition whisker_left (p : x = y) {q r : y = z} (h : q = r) : p ⬝ q = p ⬝ r :=
|
||
idp ◾ h
|
||
|
||
definition whisker_right {p q : x = y} (h : p = q) (r : y = z) : p ⬝ r = q ⬝ r :=
|
||
h ◾ idp
|
||
|
||
-- Unwhiskering, a.k.a. cancelling
|
||
|
||
definition cancel_left {x y z : A} {p : x = y} {q r : y = z} : (p ⬝ q = p ⬝ r) → (q = r) :=
|
||
λs, !inv_con_cancel_left⁻¹ ⬝ whisker_left p⁻¹ s ⬝ !inv_con_cancel_left
|
||
|
||
definition cancel_right {x y z : A} {p q : x = y} {r : y = z} : (p ⬝ r = q ⬝ r) → (p = q) :=
|
||
λs, !con_inv_cancel_right⁻¹ ⬝ whisker_right s r⁻¹ ⬝ !con_inv_cancel_right
|
||
|
||
-- Whiskering and identity paths.
|
||
|
||
definition whisker_right_idp_right {p q : x = y} (h : p = q) :
|
||
(con_idp p)⁻¹ ⬝ whisker_right h idp ⬝ con_idp q = h :=
|
||
eq.rec_on h (eq.rec_on p idp)
|
||
|
||
definition whisker_right_idp_left (p : x = y) (q : y = z) :
|
||
whisker_right idp q = idp :> (p ⬝ q = p ⬝ q) :=
|
||
eq.rec_on q idp
|
||
|
||
definition whisker_left_idp_right (p : x = y) (q : y = z) :
|
||
whisker_left p idp = idp :> (p ⬝ q = p ⬝ q) :=
|
||
eq.rec_on q idp
|
||
|
||
definition whisker_left_idp_left {p q : x = y} (h : p = q) :
|
||
(idp_con p) ⁻¹ ⬝ whisker_left idp h ⬝ idp_con q = h :=
|
||
eq.rec_on h (eq.rec_on p idp)
|
||
|
||
definition con2_idp {p q : x = y} (h : p = q) :
|
||
h ◾ idp = whisker_right h idp :> (p ⬝ idp = q ⬝ idp) :=
|
||
idp
|
||
|
||
definition idp_con2 {p q : x = y} (h : p = q) :
|
||
idp ◾ h = whisker_left idp h :> (idp ⬝ p = idp ⬝ q) :=
|
||
idp
|
||
|
||
-- The interchange law for concatenation.
|
||
definition con2_con_con2 {p p' p'' : x = y} {q q' q'' : y = z}
|
||
(a : p = p') (b : p' = p'') (c : q = q') (d : q' = q'') :
|
||
(a ◾ c) ⬝ (b ◾ d) = (a ⬝ b) ◾ (c ⬝ d) :=
|
||
eq.rec_on d (eq.rec_on c (eq.rec_on b (eq.rec_on a idp)))
|
||
|
||
definition whisker_right_con_whisker_left {x y z : A} {p p' : x = y} {q q' : y = z}
|
||
(a : p = p') (b : q = q') :
|
||
(whisker_right a q) ⬝ (whisker_left p' b) = (whisker_left p b) ⬝ (whisker_right a q') :=
|
||
eq.rec_on b (eq.rec_on a !idp_con⁻¹)
|
||
|
||
-- Structure corresponding to the coherence equations of a bicategory.
|
||
|
||
-- The "pentagonator": the 3-cell witnessing the associativity pentagon.
|
||
definition pentagon {v w x y z : A} (p : v = w) (q : w = x) (r : x = y) (s : y = z) :
|
||
whisker_left p (con.assoc' q r s)
|
||
⬝ con.assoc' p (q ⬝ r) s
|
||
⬝ whisker_right (con.assoc' p q r) s
|
||
= con.assoc' p q (r ⬝ s) ⬝ con.assoc' (p ⬝ q) r s :=
|
||
eq.rec_on s (eq.rec_on r (eq.rec_on q (eq.rec_on p idp)))
|
||
|
||
-- The 3-cell witnessing the left unit triangle.
|
||
definition triangulator (p : x = y) (q : y = z) :
|
||
con.assoc' p idp q ⬝ whisker_right (con_idp p) q = whisker_left p (idp_con q) :=
|
||
eq.rec_on q (eq.rec_on p idp)
|
||
|
||
definition eckmann_hilton {x:A} (p q : idp = idp :> x = x) : p ⬝ q = q ⬝ p :=
|
||
(!whisker_right_idp_right ◾ !whisker_left_idp_left)⁻¹
|
||
⬝ (!con_idp ◾ !con_idp)
|
||
⬝ (!idp_con ◾ !idp_con)
|
||
⬝ !whisker_right_con_whisker_left
|
||
⬝ (!idp_con ◾ !idp_con)⁻¹
|
||
⬝ (!con_idp ◾ !con_idp)⁻¹
|
||
⬝ (!whisker_left_idp_left ◾ !whisker_right_idp_right)
|
||
|
||
-- The action of functions on 2-dimensional paths
|
||
definition ap02 (f : A → B) {x y : A} {p q : x = y} (r : p = q) : ap f p = ap f q :=
|
||
eq.rec_on r idp
|
||
|
||
definition ap02_con (f : A → B) {x y : A} {p p' p'' : x = y} (r : p = p') (r' : p' = p'') :
|
||
ap02 f (r ⬝ r') = ap02 f r ⬝ ap02 f r' :=
|
||
eq.rec_on r (eq.rec_on r' idp)
|
||
|
||
definition ap02_con2 (f : A → B) {x y z : A} {p p' : x = y} {q q' :y = z} (r : p = p')
|
||
(s : q = q') :
|
||
ap02 f (r ◾ s) = ap_con f p q
|
||
⬝ (ap02 f r ◾ ap02 f s)
|
||
⬝ (ap_con f p' q')⁻¹ :=
|
||
eq.rec_on r (eq.rec_on s (eq.rec_on q (eq.rec_on p idp)))
|
||
|
||
definition apd02 {p q : x = y} (f : Π x, P x) (r : p = q) :
|
||
apd f p = transport2 P r (f x) ⬝ apd f q :=
|
||
eq.rec_on r !idp_con⁻¹
|
||
|
||
-- And now for a lemma whose statement is much longer than its proof.
|
||
definition apd02_con (P : A → Type) (f : Π x:A, P x) {x y : A}
|
||
{p1 p2 p3 : x = y} (r1 : p1 = p2) (r2 : p2 = p3) :
|
||
apd02 f (r1 ⬝ r2) = apd02 f r1
|
||
⬝ whisker_left (transport2 P r1 (f x)) (apd02 f r2)
|
||
⬝ con.assoc' _ _ _
|
||
⬝ (whisker_right (tr2_con P r1 r2 (f x))⁻¹ (apd f p3)) :=
|
||
eq.rec_on r2 (eq.rec_on r1 (eq.rec_on p1 idp))
|
||
end eq
|