lean2/hott/types/pi.hlean

198 lines
7.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: types.pi
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about pi-types (dependent function spaces)
-/
import types.sigma
open eq equiv is_equiv funext
namespace pi
variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type}
{D : Πa b, C a b → Type}
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g : Πa, B a}
/- Paths -/
/- Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values in path types, [H : Πx:X, f x ≈ g x], or concisely, [H : f g].
This equivalence, however, is just the combination of [apd10] and function extensionality [funext], and as such, [path_forall], et seq. are given in axioms.funext and path: -/
/- Now we show how these things compute. -/
definition apd10_eq_of_homotopy (h : f g) : apd10 (eq_of_homotopy h) h :=
apd10 (retr apd10 h)
definition eq_of_homotopy_eta (p : f = g) : eq_of_homotopy (apd10 p) = p :=
sect apd10 p
definition eq_of_homotopy_idp (f : Πa, B a) : eq_of_homotopy (λx : A, refl (f x)) = refl f :=
!eq_of_homotopy_eta
/- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/
definition eq_equiv_homotopy (f g : Πx, B x) : (f = g) ≃ (f g) :=
equiv.mk _ !is_equiv_apd
definition is_equiv_eq_of_homotopy [instance] (f g : Πx, B x)
: is_equiv (@eq_of_homotopy _ _ f g) :=
is_equiv_inv apd10
definition homotopy_equiv_eq (f g : Πx, B x) : (f g) ≃ (f = g) :=
equiv.mk _ !is_equiv_eq_of_homotopy
/- Transport -/
definition pi_transport (p : a = a') (f : Π(b : B a), C a b)
: (transport (λa, Π(b : B a), C a b) p f)
(λb, transport (C a') !tr_inv_tr (transportD _ p _ (f (p⁻¹ ▹ b)))) :=
eq.rec_on p (λx, idp)
/- A special case of [transport_pi] where the type [B] does not depend on [A],
and so it is just a fixed type [B]. -/
definition pi_transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b) (b : A')
: (transport (λa, Π(b : A'), C a b) p f) b = transport (λa, C a b) p (f b) :=
eq.rec_on p idp
/- Maps on paths -/
/- The action of maps given by lambda. -/
definition ap_lambdaD {C : A' → Type} (p : a = a') (f : Πa b, C b) :
ap (λa b, f a b) p = eq_of_homotopy (λb, ap (λa, f a b) p) :=
begin
apply (eq.rec_on p),
apply inverse,
apply eq_of_homotopy_idp
end
/- Dependent paths -/
/- with more implicit arguments the conclusion of the following theorem is
(Π(b : B a), transportD B C p b (f b) = g (transport B p b)) ≃
(transport (λa, Π(b : B a), C a b) p f = g) -/
definition heq_piD (p : a = a') (f : Π(b : B a), C a b)
(g : Π(b' : B a'), C a' b') : (Π(b : B a), p ▹D (f b) = g (p ▹ b)) ≃ (p ▹ f = g) :=
eq.rec_on p (λg, !homotopy_equiv_eq) g
definition heq_pi {C : A → Type} (p : a = a') (f : Π(b : B a), C a)
(g : Π(b' : B a'), C a') : (Π(b : B a), p ▹ (f b) = g (p ▹ b)) ≃ (p ▹ f = g) :=
eq.rec_on p (λg, !homotopy_equiv_eq) g
section
open sigma sigma.ops
/- more implicit arguments:
(Π(b : B a), transport C (sigma_eq p idp) (f b) = g (p ▹ b)) ≃
(Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) = g (transport B p b)) -/
definition heq_pi_sigma {C : (Σa, B a) → Type} (p : a = a')
(f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) :
(Π(b : B a), (sigma_eq p idp) ▹ (f b) = g (p ▹ b)) ≃ (Π(b : B a), p ▹D (f b) = g (p ▹ b)) :=
eq.rec_on p (λg, !equiv.refl) g
end
/- Functorial action -/
variables (f0 : A' → A) (f1 : Π(a':A'), B (f0 a') → B' a')
/- The functoriality of [forall] is slightly subtle: it is contravariant in the domain type and covariant in the codomain, but the codomain is dependent on the domain. -/
definition pi_functor : (Π(a:A), B a) → (Π(a':A'), B' a') := (λg a', f1 a' (g (f0 a')))
definition ap_pi_functor {g g' : Π(a:A), B a} (h : g g')
: ap (pi_functor f0 f1) (eq_of_homotopy h) = eq_of_homotopy (λa':A', (ap (f1 a') (h (f0 a')))) :=
begin
apply (equiv_rect (@apd10 A B g g')), intro p, clear h,
cases p,
apply concat,
exact (ap (ap (pi_functor f0 f1)) (eq_of_homotopy_idp g)),
apply symm, apply eq_of_homotopy_idp
end
/- Equivalences -/
definition is_equiv_pi_functor [instance]
[H0 : is_equiv f0] [H1 : Πa', @is_equiv (B (f0 a')) (B' a') (f1 a')]
: is_equiv (pi_functor f0 f1) :=
begin
apply (adjointify (pi_functor f0 f1) (pi_functor f0⁻¹
(λ(a : A) (b' : B' (f0⁻¹ a)), transport B (retr f0 a) ((f1 (f0⁻¹ a))⁻¹ b')))),
intro h, apply eq_of_homotopy,
unfold pi_functor, unfold function.compose, unfold function.id,
begin
intro a',
apply (tr_inv _ (adj f0 a')),
apply (transport (λx, f1 a' x = h a') (transport_compose B f0 (sect f0 a') _)),
apply (tr_inv (λx, x = h a') (fn_tr_eq_tr_fn _ f1 _)), unfold function.compose,
apply (tr_inv (λx, sect f0 a' ▹ x = h a') (retr (f1 _) _)), unfold function.id,
apply apd
end,
begin
intro h,
apply eq_of_homotopy, intro a,
apply (tr_inv (λx, retr f0 a ▹ x = h a) (sect (f1 _) _)), unfold function.id,
apply apd
end
end
definition pi_equiv_pi_of_is_equiv [H : is_equiv f0] [H1 : Πa', @is_equiv (B (f0 a')) (B' a') (f1 a')]
: (Πa, B a) ≃ (Πa', B' a') :=
equiv.mk (pi_functor f0 f1) _
definition pi_equiv_pi (f0 : A' ≃ A) (f1 : Πa', (B (to_fun f0 a') ≃ B' a'))
: (Πa, B a) ≃ (Πa', B' a') :=
pi_equiv_pi_of_is_equiv (to_fun f0) (λa', to_fun (f1 a'))
definition pi_equiv_pi_id {P Q : A → Type} (g : Πa, P a ≃ Q a) : (Πa, P a) ≃ (Πa, Q a) :=
pi_equiv_pi equiv.refl g
/- Truncatedness: any dependent product of n-types is an n-type -/
open is_trunc
definition is_trunc_pi [instance] (B : A → Type) (n : trunc_index)
[H : ∀a, is_trunc n (B a)] : is_trunc n (Πa, B a) :=
begin
reverts [B, H],
apply (trunc_index.rec_on n),
{intros [B, H],
fapply is_contr.mk,
intro a, apply center,
intro f, apply eq_of_homotopy,
intro x, apply (contr (f x))},
{intros [n, IH, B, H],
fapply is_trunc_succ_intro, intros [f, g],
fapply is_trunc_equiv_closed,
apply equiv.symm, apply eq_equiv_homotopy,
apply IH,
intro a,
show is_trunc n (f a = g a), from
is_trunc_eq n (f a) (g a)}
end
definition is_trunc_eq_pi [instance] (n : trunc_index) (f g : Πa, B a)
[H : ∀a, is_trunc n (f a = g a)] : is_trunc n (f = g) :=
begin
apply is_trunc_equiv_closed, apply equiv.symm,
apply eq_equiv_homotopy
end
/- Symmetry of Π -/
definition is_equiv_flip [instance] {P : A → A' → Type} : is_equiv (@function.flip _ _ P) :=
begin
fapply is_equiv.mk,
exact (@function.flip _ _ (function.flip P)),
repeat (intro f; apply idp)
end
definition pi_comm_equiv {P : A → A' → Type} : (Πa b, P a b) ≃ (Πb a, P a b) :=
equiv.mk (@function.flip _ _ P) _
end pi
attribute pi.is_trunc_pi [instance]