lean2/library/theories/analysis/metric_space.lean
Jeremy Avigad e80559237a fix(library/data/real): tinker with instances
Convert two instances of has_zero and has_one to local instance,
and change one "[instance]" to a "[trans_instance]". This (by
accident) fixed a problem Rob had a couple of weeks ago.
2016-02-22 11:25:23 -08:00

802 lines
27 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Metric spaces.
-/
import data.real.complete data.pnat data.list.sort ..topology.basic data.set
open nat real eq.ops classical
structure metric_space [class] (M : Type) : Type :=
(dist : M → M → )
(dist_self : ∀ x : M, dist x x = 0)
(eq_of_dist_eq_zero : ∀ {x y : M}, dist x y = 0 → x = y)
(dist_comm : ∀ x y : M, dist x y = dist y x)
(dist_triangle : ∀ x y z : M, dist x z ≤ dist x y + dist y z)
namespace analysis
section metric_space_M
variables {M : Type} [metric_space M]
definition dist (x y : M) : := metric_space.dist x y
proposition dist_self (x : M) : dist x x = 0 := metric_space.dist_self x
proposition eq_of_dist_eq_zero {x y : M} (H : dist x y = 0) : x = y :=
metric_space.eq_of_dist_eq_zero H
proposition dist_comm (x y : M) : dist x y = dist y x := metric_space.dist_comm x y
proposition dist_eq_zero_iff (x y : M) : dist x y = 0 ↔ x = y :=
iff.intro eq_of_dist_eq_zero (suppose x = y, this ▸ !dist_self)
proposition dist_triangle (x y z : M) : dist x z ≤ dist x y + dist y z :=
metric_space.dist_triangle x y z
proposition dist_nonneg (x y : M) : 0 ≤ dist x y :=
have dist x y + dist y x ≥ 0, by rewrite -(dist_self x); apply dist_triangle,
have 2 * dist x y ≥ 0, using this,
by krewrite [-real.one_add_one, right_distrib, +one_mul, dist_comm at {2}]; apply this,
nonneg_of_mul_nonneg_left this two_pos
proposition dist_pos_of_ne {x y : M} (H : x ≠ y) : dist x y > 0 :=
lt_of_le_of_ne !dist_nonneg (suppose 0 = dist x y, H (iff.mp !dist_eq_zero_iff this⁻¹))
proposition ne_of_dist_pos {x y : M} (H : dist x y > 0) : x ≠ y :=
suppose x = y,
have H1 [visible] : dist x x > 0, by rewrite this at {2}; exact H,
by rewrite dist_self at H1; apply not_lt_self _ H1
proposition eq_of_forall_dist_le {x y : M} (H : ∀ ε, ε > 0 → dist x y ≤ ε) : x = y :=
eq_of_dist_eq_zero (eq_zero_of_nonneg_of_forall_le !dist_nonneg H)
/- convergence of a sequence -/
definition converges_to_seq (X : → M) (y : M) : Prop :=
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ ⦃n⦄, n ≥ N → dist (X n) y < ε
-- the same, with ≤ in place of <; easier to prove, harder to use
definition converges_to_seq.intro {X : → M} {y : M}
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → dist (X n) y ≤ ε) :
converges_to_seq X y :=
take ε, assume epos : ε > 0,
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
obtain N HN, from H e2pos,
exists.intro N
(take n, suppose n ≥ N,
calc
dist (X n) y ≤ ε / 2 : HN _ `n ≥ N`
... < ε : div_two_lt_of_pos epos)
notation X `⟶` y `in` `` := converges_to_seq X y
definition converges_seq [class] (X : → M) : Prop := ∃ y, X ⟶ y in
noncomputable definition limit_seq (X : → M) [H : converges_seq X] : M := some H
proposition converges_to_limit_seq (X : → M) [H : converges_seq X] :
(X ⟶ limit_seq X in ) :=
some_spec H
proposition converges_to_seq_unique {X : → M} {y₁ y₂ : M}
(H₁ : X ⟶ y₁ in ) (H₂ : X ⟶ y₂ in ) : y₁ = y₂ :=
eq_of_forall_dist_le
(take ε, suppose ε > 0,
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y₁ < ε / 2), from H₁ e2pos,
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y₂ < ε / 2), from H₂ e2pos,
let N := max N₁ N₂ in
have dN₁ : dist (X N) y₁ < ε / 2, from HN₁ !le_max_left,
have dN₂ : dist (X N) y₂ < ε / 2, from HN₂ !le_max_right,
have dist y₁ y₂ < ε, from calc
dist y₁ y₂ ≤ dist y₁ (X N) + dist (X N) y₂ : dist_triangle
... = dist (X N) y₁ + dist (X N) y₂ : dist_comm
... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂
... = ε : add_halves,
show dist y₁ y₂ ≤ ε, from le_of_lt this)
proposition eq_limit_of_converges_to_seq {X : → M} {y : M} (H : X ⟶ y in ) :
y = @limit_seq M _ X (exists.intro y H) :=
converges_to_seq_unique H (@converges_to_limit_seq M _ X (exists.intro y H))
proposition converges_to_seq_constant (y : M) : (λn, y) ⟶ y in :=
take ε, assume egt0 : ε > 0,
exists.intro 0
(take n, suppose n ≥ 0,
calc
dist y y = 0 : !dist_self
... < ε : egt0)
proposition converges_to_seq_offset {X : → M} {y : M} (k : ) (H : X ⟶ y in ) :
(λ n, X (n + k)) ⟶ y in :=
take ε, suppose ε > 0,
obtain N HN, from H `ε > 0`,
exists.intro N
(take n : , assume ngtN : n ≥ N,
show dist (X (n + k)) y < ε, from HN (n + k) (le.trans ngtN !le_add_right))
proposition converges_to_seq_offset_left {X : → M} {y : M} (k : ) (H : X ⟶ y in ) :
(λ n, X (k + n)) ⟶ y in :=
have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm),
by+ rewrite aux; exact converges_to_seq_offset k H
proposition converges_to_seq_offset_succ {X : → M} {y : M} (H : X ⟶ y in ) :
(λ n, X (succ n)) ⟶ y in :=
converges_to_seq_offset 1 H
proposition converges_to_seq_of_converges_to_seq_offset
{X : → M} {y : M} {k : } (H : (λ n, X (n + k)) ⟶ y in ) :
X ⟶ y in :=
take ε, suppose ε > 0,
obtain N HN, from H `ε > 0`,
exists.intro (N + k)
(take n : , assume nge : n ≥ N + k,
have n - k ≥ N, from nat.le_sub_of_add_le nge,
have dist (X (n - k + k)) y < ε, from HN (n - k) this,
show dist (X n) y < ε, using this,
by rewrite [(nat.sub_add_cancel (le.trans !le_add_left nge)) at this]; exact this)
proposition converges_to_seq_of_converges_to_seq_offset_left
{X : → M} {y : M} {k : } (H : (λ n, X (k + n)) ⟶ y in ) :
X ⟶ y in :=
have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm),
by+ rewrite aux at H; exact converges_to_seq_of_converges_to_seq_offset H
proposition converges_to_seq_of_converges_to_seq_offset_succ
{X : → M} {y : M} (H : (λ n, X (succ n)) ⟶ y in ) :
X ⟶ y in :=
@converges_to_seq_of_converges_to_seq_offset M _ X y 1 H
proposition converges_to_seq_offset_iff (X : → M) (y : M) (k : ) :
((λ n, X (n + k)) ⟶ y in ) ↔ (X ⟶ y in ) :=
iff.intro converges_to_seq_of_converges_to_seq_offset !converges_to_seq_offset
proposition converges_to_seq_offset_left_iff (X : → M) (y : M) (k : ) :
((λ n, X (k + n)) ⟶ y in ) ↔ (X ⟶ y in ) :=
iff.intro converges_to_seq_of_converges_to_seq_offset_left !converges_to_seq_offset_left
proposition converges_to_seq_offset_succ_iff (X : → M) (y : M) :
((λ n, X (succ n)) ⟶ y in ) ↔ (X ⟶ y in ) :=
iff.intro converges_to_seq_of_converges_to_seq_offset_succ !converges_to_seq_offset_succ
section
open list
definition r_trans : transitive (@le _) := λ a b c, !le.trans
definition r_refl : reflexive (@le _) := λ a, !le.refl
theorem dec_prf_eq (P : Prop) (H1 H2 : decidable P) : H1 = H2 :=
begin
induction H1,
induction H2,
reflexivity,
apply absurd a a_1,
induction H2,
apply absurd a_1 a,
reflexivity
end
-- there's a very ugly part of this proof.
proposition bounded_of_converges_seq {X : → M} {x : M} (H : X ⟶ x in ) :
∃ K : , ∀ n : , dist (X n) x ≤ K :=
begin
cases H zero_lt_one with N HN,
cases em (N = 0),
existsi 1,
intro n,
apply le_of_lt,
apply HN,
rewrite a,
apply zero_le,
let l := map (λ n : , -dist (X n) x) (upto N),
have Hnenil : l ≠ nil, from (map_ne_nil_of_ne_nil _ (upto_ne_nil_of_ne_zero a)),
existsi max (-list.min (λ a b : , le a b) l Hnenil) 1,
intro n,
have Hsmn : ∀ m : , m < N → dist (X m) x ≤ max (-list.min (λ a b : , le a b) l Hnenil) 1, begin
intro m Hm,
apply le.trans,
rotate 1,
apply le_max_left,
note Hall := min_lemma real.le_total r_trans r_refl Hnenil,
have Hmem : -dist (X m) x ∈ (map (λ (n : ), -dist (X n) x) (upto N)), from mem_map _ (mem_upto_of_lt Hm),
note Hallm' := of_mem_of_all Hmem Hall,
apply le_neg_of_le_neg,
esimp, esimp at Hallm',
/-
have Heqs : (λ (a b : real), classical.prop_decidable (@le.{1} real real.real_has_le a b))
=
(@decidable_le.{1} real
(@decidable_linear_ordered_comm_group.to_decidable_linear_order.{1} real
(@decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group.{1} real
(@discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring.{1} real
real.discrete_linear_ordered_field)))),
begin
apply funext, intro, apply funext, intro,
apply dec_prf_eq
end,
rewrite -Heqs,
-/
exact Hallm'
end,
cases em (n < N) with Elt Ege,
apply Hsmn,
exact Elt,
apply le_of_lt,
apply lt_of_lt_of_le,
apply HN,
apply le_of_not_gt Ege,
apply le_max_right
end
end
/- cauchy sequences -/
definition cauchy (X : → M) : Prop :=
∀ ε : , ε > 0 → ∃ N, ∀ m n, m ≥ N → n ≥ N → dist (X m) (X n) < ε
proposition cauchy_of_converges_seq (X : → M) [H : converges_seq X] : cauchy X :=
take ε, suppose ε > 0,
obtain y (Hy : converges_to_seq X y), from H,
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y < ε / 2), from Hy e2pos,
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y < ε / 2), from Hy e2pos,
let N := max N₁ N₂ in
exists.intro N
(take m n, suppose m ≥ N, suppose n ≥ N,
have m ≥ N₁, from le.trans !le_max_left `m ≥ N`,
have n ≥ N₂, from le.trans !le_max_right `n ≥ N`,
have dN₁ : dist (X m) y < ε / 2, from HN₁ `m ≥ N₁`,
have dN₂ : dist (X n) y < ε / 2, from HN₂ `n ≥ N₂`,
show dist (X m) (X n) < ε, from calc
dist (X m) (X n) ≤ dist (X m) y + dist y (X n) : dist_triangle
... = dist (X m) y + dist (X n) y : dist_comm
... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂
... = ε : add_halves)
end metric_space_M
/- convergence of a function at a point -/
section metric_space_M_N
variables {M N : Type} [strucM : metric_space M] [strucN : metric_space N]
include strucM strucN
definition converges_to_at (f : M → N) (y : N) (x : M) :=
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ≠ x ∧ dist x' x < δ → dist (f x') y < ε
notation f `⟶` y `at` x := converges_to_at f y x
definition converges_at [class] (f : M → N) (x : M) :=
∃ y, converges_to_at f y x
noncomputable definition limit_at (f : M → N) (x : M) [H : converges_at f x] : N :=
some H
proposition converges_to_limit_at (f : M → N) (x : M) [H : converges_at f x] :
(f ⟶ limit_at f x at x) :=
some_spec H
section
omit strucN
set_option pp.coercions true
--set_option pp.all true
open pnat rat
section
omit strucM
private lemma of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat (p : pnat) :
of_rat (rat_of_pnat p) = of_nat (nat_of_pnat p) :=
rfl
end
theorem cnv_real_of_cnv_nat {X : → M} {c : M} (H : ∀ n : , dist (X n) c < 1 / (real.of_nat n + 1)) :
∀ ε : , ε > 0 → ∃ N : , ∀ n : , n ≥ N → dist (X n) c < ε :=
begin
intros ε Hε,
cases ex_rat_pos_lower_bound_of_pos Hε with q Hq,
cases Hq with Hq1 Hq2,
cases pnat_bound Hq1 with p Hp,
existsi nat_of_pnat p,
intros n Hn,
apply lt_of_lt_of_le,
apply H,
apply le.trans,
rotate 1,
apply Hq2,
have Hrat : of_rat (inv p) ≤ of_rat q, from of_rat_le_of_rat_of_le Hp,
apply le.trans,
rotate 1,
exact Hrat,
change 1 / (of_nat n + 1) ≤ of_rat ((1 : ) / (rat_of_pnat p)),
rewrite [of_rat_divide, of_rat_one],
eapply one_div_le_one_div_of_le,
krewrite -of_rat_zero,
apply of_rat_lt_of_rat_of_lt,
apply rat_of_pnat_is_pos,
krewrite [of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat, -real.of_nat_add],
apply real.of_nat_le_of_nat_of_le,
apply le_add_of_le_right,
assumption
end
end
theorem all_conv_seqs_of_converges_to_at {f : M → N} {c : M} {l : N} (Hconv : f ⟶ l at c) :
∀ X : → M, ((∀ n : , ((X n) ≠ c) ∧ (X ⟶ c in )) → ((λ n : , f (X n)) ⟶ l in )) :=
begin
intros X HX,
rewrite [↑converges_to_at at Hconv, ↑converges_to_seq],
intros ε Hε,
cases Hconv Hε with δ Hδ,
cases Hδ with Hδ1 Hδ2,
cases HX 0 with _ HXlim,
cases HXlim Hδ1 with N1 HN1,
existsi N1,
intro n Hn,
apply Hδ2,
split,
apply and.left (HX _),
exact HN1 Hn
end
theorem converges_to_at_of_all_conv_seqs {f : M → N} (c : M) (l : N)
(Hseq : ∀ X : → M, ((∀ n : , ((X n) ≠ c) ∧ (X ⟶ c in )) → ((λ n : , f (X n)) ⟶ l in )))
: f ⟶ l at c :=
by_contradiction
(assume Hnot : ¬ (f ⟶ l at c),
obtain ε Hε, from exists_not_of_not_forall Hnot,
let Hε' := iff.mp not_implies_iff_and_not Hε in
obtain (H1 : ε > 0) H2, from Hε',
have H3 [visible] : ∀ δ : , (δ > 0 → ∃ x' : M, x' ≠ c ∧ dist x' c < δ ∧ dist (f x') l ≥ ε), begin -- tedious!!
intros δ Hδ,
note Hε'' := forall_not_of_not_exists H2,
note H4 := forall_not_of_not_exists H2 δ,
have ¬ (∀ x' : M, x' ≠ c ∧ dist x' c < δ → dist (f x') l < ε), from λ H', H4 (and.intro Hδ H'),
note H5 := exists_not_of_not_forall this,
cases H5 with x' Hx',
existsi x',
note H6 := iff.mp not_implies_iff_and_not Hx',
rewrite and.assoc at H6,
cases H6,
split,
assumption,
cases a_1,
split,
assumption,
apply le_of_not_gt,
assumption
end,
let S : → M → Prop := λ n x, 0 < dist x c ∧ dist x c < 1 / (of_nat n + 1) ∧ dist (f x) l ≥ ε in
have HS [visible] : ∀ n : , ∃ m : M, S n m, begin
intro k,
have Hpos : 0 < of_nat k + 1, from of_nat_succ_pos k,
cases H3 (1 / (k + 1)) (one_div_pos_of_pos Hpos) with x' Hx',
cases Hx' with Hne Hx',
cases Hx' with Hdistl Hdistg,
existsi x',
esimp,
split,
apply dist_pos_of_ne,
assumption,
split,
repeat assumption
end,
let X : → M := λ n, some (HS n) in
have H4 [visible] : ∀ n : , ((X n) ≠ c) ∧ (X ⟶ c in ), from
(take n, and.intro
(begin
note Hspec := some_spec (HS n),
esimp, esimp at Hspec,
cases Hspec,
apply ne_of_dist_pos,
assumption
end)
(begin
apply cnv_real_of_cnv_nat,
intro m,
note Hspec := some_spec (HS m),
esimp, esimp at Hspec,
cases Hspec with Hspec1 Hspec2,
cases Hspec2,
assumption
end)),
have H5 [visible] : (λ n : , f (X n)) ⟶ l in , from Hseq X H4,
begin
note H6 := H5 H1,
cases H6 with Q HQ,
note HQ' := HQ !le.refl,
esimp at HQ',
apply absurd HQ',
apply not_lt_of_ge,
note H7 := some_spec (HS Q),
esimp at H7,
cases H7 with H71 H72,
cases H72,
assumption
end)
end metric_space_M_N
section topology
/- A metric space is a topological space. -/
open set prod topology
variables {V : Type} [Vmet : metric_space V]
include Vmet
definition open_ball (x : V) (ε : ) := {y ∈ univ | dist x y < ε}
theorem open_ball_empty_of_nonpos (x : V) {ε : } (Hε : ε ≤ 0) : open_ball x ε = ∅ :=
begin
apply eq_empty_of_forall_not_mem,
intro y Hy,
note Hlt := and.right Hy,
apply not_lt_of_ge (dist_nonneg x y),
apply lt_of_lt_of_le Hlt Hε
end
theorem radius_pos_of_nonempty {x : V} {ε : } {u : V} (Hu : u ∈ open_ball x ε) : ε > 0 :=
begin
apply lt_of_not_ge,
intro Hge,
note Hop := open_ball_empty_of_nonpos x Hge,
rewrite Hop at Hu,
apply not_mem_empty _ Hu
end
theorem mem_open_ball (x : V) {ε : } (H : ε > 0) : x ∈ open_ball x ε :=
suffices x ∈ univ ∧ dist x x < ε, from this,
and.intro !mem_univ (by rewrite dist_self; assumption)
definition closed_ball (x : V) (ε : ) := {y ∈ univ | dist x y ≤ ε}
theorem closed_ball_eq_comp (x : V) (ε : ) : closed_ball x ε = -{y ∈ univ | dist x y > ε} :=
begin
apply ext,
intro y,
apply iff.intro,
intro Hx,
apply mem_comp,
intro Hxmem,
cases Hxmem with _ Hgt,
cases Hx with _ Hle,
apply not_le_of_gt Hgt Hle,
intro Hx,
note Hx' := not_mem_of_mem_comp Hx,
split,
apply mem_univ,
apply le_of_not_gt,
intro Hgt,
apply Hx',
split,
apply mem_univ,
assumption
end
omit Vmet
definition open_sets_basis (V : Type) [metric_space V] :=
image (λ pair : V × , open_ball (pr1 pair) (pr2 pair)) univ
definition metric_topology [instance] (V : Type) [metric_space V] : topology V :=
topology.generated_by (open_sets_basis V)
include Vmet
theorem open_ball_mem_open_sets_basis (x : V) (ε : ) : (open_ball x ε) ∈ (open_sets_basis V) :=
mem_image !mem_univ rfl
theorem open_ball_open (x : V) (ε : ) : Open (open_ball x ε) :=
by apply generators_mem_topology_generated_by; apply open_ball_mem_open_sets_basis
theorem closed_ball_closed (x : V) {ε : } (H : ε > 0) : closed (closed_ball x ε) :=
begin
apply iff.mpr !closed_iff_Open_comp,
rewrite closed_ball_eq_comp,
rewrite comp_comp,
apply Open_of_forall_exists_Open_nbhd,
intro y Hy,
cases Hy with _ Hxy,
existsi open_ball y (dist x y - ε),
split,
apply open_ball_open,
split,
apply mem_open_ball,
apply sub_pos_of_lt Hxy,
intros y' Hy',
cases Hy' with _ Hxy'd,
rewrite dist_comm at Hxy'd,
split,
apply mem_univ,
apply lt_of_not_ge,
intro Hxy',
apply not_lt_self (dist x y),
exact calc
dist x y ≤ dist x y' + dist y' y : dist_triangle
... ≤ ε + dist y' y : add_le_add_right Hxy'
... < ε + (dist x y - ε) : add_lt_add_left Hxy'd
... = dist x y : by rewrite [add.comm, sub_add_cancel]
end
private theorem not_mem_open_basis_of_boundary_pt {s : set V} (a : s ∈ open_sets_basis V) {x : V}
(Hbd : ∀ ε : , ε > 0 → ∃ v : V, v ∉ s ∧ dist x v < ε) : ¬ x ∈ s :=
begin
intro HxU,
cases a with pr Hpr,
cases pr with y r,
cases Hpr with _ Hs,
rewrite -Hs at HxU,
have H : dist y x < r, from and.right HxU,
cases Hbd _ (sub_pos_of_lt H) with v Hv,
cases Hv with Hv Hvdist,
apply Hv,
rewrite -Hs,
apply and.intro,
apply mem_univ,
apply lt_of_le_of_lt,
apply dist_triangle,
exact x,
esimp,
exact calc
dist y x + dist x v < dist y x + (r - dist y x) : add_lt_add_left Hvdist
... = r : by rewrite [add.comm, sub_add_cancel]
end
private theorem not_mem_intersect_of_boundary_pt {s t : set V} (a : Open s) (a_1 : Open t) {x : V}
(v_0 : (x ∈ s → ¬ (∀ (ε : ), ε > 0 → (∃ (v : V), v ∉ s ∧ dist x v < ε))))
(v_1 : (x ∈ t → ¬ (∀ (ε : ), ε > 0 → (∃ (v : V), v ∉ t ∧ dist x v < ε))))
(Hbd : ∀ (ε : ), ε > 0 → (∃ (v : V), v ∉ s ∩ t ∧ dist x v < ε)) : ¬ (x ∈ s ∩ t) :=
begin
intro HxU,
have Hxs : x ∈ s, from mem_of_mem_inter_left HxU,
have Hxt : x ∈ t, from mem_of_mem_inter_right HxU,
note Hsih := exists_not_of_not_forall (v_0 Hxs),
note Htih := exists_not_of_not_forall (v_1 Hxt),
cases Hsih with ε1 Hε1,
cases Htih with ε2 Hε2,
note Hε1' := iff.mp not_implies_iff_and_not Hε1,
note Hε2' := iff.mp not_implies_iff_and_not Hε2,
cases Hε1' with Hε1p Hε1',
cases Hε2' with Hε2p Hε2',
note Hε1'' := forall_not_of_not_exists Hε1',
note Hε2'' := forall_not_of_not_exists Hε2',
have Hmin : min ε1 ε2 > 0, from lt_min Hε1p Hε2p,
cases Hbd _ Hmin with v Hv,
cases Hv with Hvint Hvdist,
note Hε1v := Hε1'' v,
note Hε2v := Hε2'' v,
cases em (v ∉ s) with Hnm Hmem,
apply Hε1v,
split,
exact Hnm,
apply lt_of_lt_of_le Hvdist,
apply min_le_left,
apply Hε2v,
have Hmem' : v ∈ s, from not_not_elim Hmem,
note Hnm := not_mem_of_mem_of_not_mem_inter_left Hmem' Hvint,
split,
exact Hnm,
apply lt_of_lt_of_le Hvdist,
apply min_le_right
end
private theorem not_mem_sUnion_of_boundary_pt {S : set (set V)} (a : ∀₀ s ∈ S, Open s) {x : V}
(v_0 : ∀ ⦃x_1 : set V⦄,
x_1 ∈ S → x ∈ x_1 → ¬ (∀ (ε : ), ε > 0 → (∃ (v : V), v ∉ x_1 ∧ dist x v < ε)))
(Hbd : ∀ (ε : ), ε > 0 → (∃ (v : V), v ∉ ⋃₀ S ∧ dist x v < ε)) : ¬ x ∈ ⋃₀ S :=
begin
intro HxU,
have Hex : ∃₀ s ∈ S, x ∈ s, from HxU,
cases Hex with s Hs,
cases Hs with Hs Hxs,
cases exists_not_of_not_forall (v_0 Hs Hxs) with ε Hε,
cases iff.mp not_implies_iff_and_not Hε with Hεp Hv,
cases Hbd _ Hεp with v Hv',
cases Hv' with Hvnm Hdist,
apply Hv,
existsi v,
split,
apply not_mem_of_not_mem_sUnion Hvnm Hs,
exact Hdist
end
/-
this should be doable by showing that the open-ball boundary definition
is equivalent to topology.on_boundary, and applying topology.not_open_of_on_boundary.
But the induction hypotheses don't work out nicely.
-/
theorem not_open_of_ex_boundary_pt {U : set V} {x : V} (HxU : x ∈ U)
(Hbd : ∀ ε : , ε > 0 → ∃ v : V, v ∉ U ∧ dist x v < ε) : ¬ Open U :=
begin
intro HUopen,
induction HUopen,
{apply not_mem_open_basis_of_boundary_pt a Hbd HxU},
{cases Hbd 1 zero_lt_one with v Hv,
cases Hv with Hv _,
exact Hv !mem_univ},
{apply not_mem_intersect_of_boundary_pt a a_1 v_0 v_1 Hbd HxU},
{apply not_mem_sUnion_of_boundary_pt a v_0 Hbd HxU}
end
theorem ex_Open_ball_subset_of_Open_of_nonempty {U : set V} (HU : Open U) {x : V} (Hx : x ∈ U) :
∃ (r : ), r > 0 ∧ open_ball x r ⊆ U :=
begin
let balloon := {r ∈ univ | r > 0 ∧ open_ball x r ⊆ U},
cases em (balloon = ∅),
have H : ∀ r : , r > 0 → ∃ v : V, v ∉ U ∧ dist x v < r, begin
intro r Hr,
note Hor := iff.mp not_and_iff_not_or_not (forall_not_of_sep_empty a (mem_univ r)),
note Hor' := or.neg_resolve_left Hor Hr,
apply exists_of_not_forall_not,
intro Hall,
apply Hor',
intro y Hy,
cases iff.mp not_and_iff_not_or_not (Hall y) with Hmem Hge,
apply not_not_elim Hmem,
apply absurd (and.right Hy) Hge
end,
apply absurd HU,
apply not_open_of_ex_boundary_pt Hx H,
cases exists_mem_of_ne_empty a with r Hr,
cases Hr with _ Hr,
cases Hr with Hrpos HxrU,
existsi r,
split,
repeat assumption
end
end topology
section continuity
variables {M N : Type} [Hm : metric_space M] [Hn : metric_space N]
include Hm Hn
open topology set
/- continuity at a point -/
-- the ε - δ definition of continuity is equivalent to the topological definition
theorem continuous_at_intro {f : M → N} {x : M}
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε) :
continuous_at f x :=
begin
rewrite ↑continuous_at,
intros U HfU Uopen,
cases ex_Open_ball_subset_of_Open_of_nonempty Uopen HfU with r Hr,
cases Hr with Hr HUr,
cases H Hr with δ Hδ,
cases Hδ with Hδ Hx'δ,
existsi open_ball x δ,
split,
apply mem_open_ball,
exact Hδ,
split,
apply open_ball_open,
intro y Hy,
apply HUr,
cases Hy with y' Hy',
cases Hy' with Hy' Hfy',
cases Hy' with _ Hy',
rewrite dist_comm at Hy',
note Hy'' := Hx'δ Hy',
apply and.intro !mem_univ,
rewrite [-Hfy', dist_comm],
exact Hy''
end
theorem continuous_at_elim {f : M → N} {x : M} (Hfx : continuous_at f x) :
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε :=
begin
intros ε Hε,
rewrite [↑continuous_at at Hfx],
cases Hfx (open_ball (f x) ε) (mem_open_ball _ Hε) !open_ball_open with V HV,
cases HV with HVx HV,
cases HV with HV HVf,
cases ex_Open_ball_subset_of_Open_of_nonempty HV HVx with δ Hδ,
cases Hδ with Hδ Hδx,
existsi δ,
split,
exact Hδ,
intro x' Hx',
rewrite dist_comm,
apply and.right,
apply HVf,
existsi x',
split,
apply Hδx,
apply and.intro !mem_univ,
rewrite dist_comm,
apply Hx',
apply rfl
end
theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x at x) :
continuous_at f x :=
continuous_at_intro
(take ε, suppose ε > 0,
obtain δ Hδ, from Hf this,
exists.intro δ (and.intro
(and.left Hδ)
(take x', suppose dist x' x < δ,
if Heq : x' = x then
by rewrite [-Heq, dist_self]; assumption
else
(suffices dist x' x < δ, from and.right Hδ x' (and.intro Heq this),
this))))
theorem converges_to_at_of_continuous_at {f : M → N} {x : M} (Hf : continuous_at f x) :
f ⟶ f x at x :=
take ε, suppose ε > 0,
obtain δ Hδ, from continuous_at_elim Hf this,
exists.intro δ (and.intro
(and.left Hδ)
(take x',
assume H : x' ≠ x ∧ dist x' x < δ,
show dist (f x') (f x) < ε, from and.right Hδ x' (and.right H)))
definition continuous (f : M → N) : Prop := ∀ x, continuous_at f x
theorem converges_seq_comp_of_converges_seq_of_cts [instance] (X : → M) [HX : converges_seq X] {f : M → N}
(Hf : continuous f) :
converges_seq (λ n, f (X n)) :=
begin
cases HX with xlim Hxlim,
existsi f xlim,
rewrite ↑converges_to_seq at *,
intros ε Hε,
let Hcont := (continuous_at_elim (Hf xlim)) Hε,
cases Hcont with δ Hδ,
cases Hxlim (and.left Hδ) with B HB,
existsi B,
intro n Hn,
apply and.right Hδ,
apply HB Hn
end
omit Hn
theorem id_continuous : continuous (λ x : M, x) :=
begin
intros x,
apply continuous_at_intro,
intro ε Hε,
existsi ε,
split,
assumption,
intros,
assumption
end
end continuity
end analysis
/- complete metric spaces -/
structure complete_metric_space [class] (M : Type) extends metricM : metric_space M : Type :=
(complete : ∀ X, @analysis.cauchy M metricM X → @analysis.converges_seq M metricM X)
namespace analysis
proposition complete (M : Type) [cmM : complete_metric_space M] {X : → M} (H : cauchy X) :
converges_seq X :=
complete_metric_space.complete X H
end analysis
/- the reals form a metric space -/
noncomputable definition metric_space_real [instance] : metric_space :=
⦃ metric_space,
dist := λ x y, abs (x - y),
dist_self := λ x, abstract by rewrite [sub_self, abs_zero] end,
eq_of_dist_eq_zero := λ x y, eq_of_abs_sub_eq_zero,
dist_comm := abs_sub,
dist_triangle := abs_sub_le