e96e4a677d
Also define the pushout of categories and the pushout of groupoids
558 lines
22 KiB
Text
558 lines
22 KiB
Text
/-
|
||
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Authors: Floris van Doorn
|
||
|
||
The pushout of categories
|
||
|
||
The morphisms in the pushout of two categories is defined as a quotient on lists of composable
|
||
morphisms. We first define a general notion of indexed lists, such that each element in the list has two endpoints, and the endpoints between adjacent members of the list have to be the same.
|
||
-/
|
||
|
||
import ..category ..nat_trans hit.set_quotient algebra.relation ..groupoid
|
||
|
||
open eq is_trunc functor trunc sum set_quotient relation iso category sigma nat
|
||
|
||
inductive indexed_list {A : Type} (R : A → A → Type) : A → A → Type :=
|
||
| nil {} : Π{a : A}, indexed_list R a a
|
||
| cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃), indexed_list R a₁ a₂ → indexed_list R a₁ a₃
|
||
|
||
namespace indexed_list
|
||
|
||
notation h :: t := cons h t
|
||
notation `[` l:(foldr `, ` (h t, cons h t) nil `]`) := l
|
||
|
||
variables {A : Type} {R : A → A → Type} {a a' a₁ a₂ a₃ a₄ : A}
|
||
|
||
definition concat (r : R a₁ a₂) (l : indexed_list R a₂ a₃) : indexed_list R a₁ a₃ :=
|
||
begin
|
||
induction l with a a₂ a₃ a₄ r' l IH,
|
||
{ exact [r]},
|
||
{ exact r' :: IH r}
|
||
end
|
||
|
||
theorem concat_nil (r : R a₁ a₂) : concat r (@nil A R a₂) = [r] := idp
|
||
|
||
theorem concat_cons (r : R a₁ a₂) (r' : R a₃ a₄) (l : indexed_list R a₂ a₃)
|
||
: concat r (r'::l) = r'::(concat r l) := idp
|
||
|
||
definition append (l₂ : indexed_list R a₂ a₃) (l₁ : indexed_list R a₁ a₂) :
|
||
indexed_list R a₁ a₃ :=
|
||
begin
|
||
induction l₂,
|
||
{ exact l₁},
|
||
{ exact cons r (v_0 l₁)}
|
||
end
|
||
|
||
infix ` ++ ` := append
|
||
|
||
definition nil_append (l : indexed_list R a₁ a₂) : nil ++ l = l := idp
|
||
definition cons_append (r : R a₃ a₄) (l₂ : indexed_list R a₂ a₃) (l₁ : indexed_list R a₁ a₂) :
|
||
(r :: l₂) ++ l₁ = r :: (l₂ ++ l₁) := idp
|
||
|
||
definition singleton_append (r : R a₂ a₃) (l : indexed_list R a₁ a₂) : [r] ++ l = r :: l := idp
|
||
definition append_singleton (l : indexed_list R a₂ a₃) (r : R a₁ a₂) : l ++ [r] = concat r l :=
|
||
begin
|
||
induction l,
|
||
{ reflexivity},
|
||
{ exact ap (cons r) !v_0}
|
||
end
|
||
|
||
definition append_nil (l : indexed_list R a₁ a₂) : l ++ nil = l :=
|
||
begin
|
||
induction l,
|
||
{ reflexivity},
|
||
{ exact ap (cons r) v_0}
|
||
end
|
||
|
||
definition append_assoc (l₃ : indexed_list R a₃ a₄) (l₂ : indexed_list R a₂ a₃)
|
||
(l₁ : indexed_list R a₁ a₂) : (l₃ ++ l₂) ++ l₁ = l₃ ++ (l₂ ++ l₁) :=
|
||
begin
|
||
induction l₃,
|
||
{ reflexivity},
|
||
{ refine ap (cons r) !v_0}
|
||
end
|
||
|
||
theorem append_concat (l₂ : indexed_list R a₃ a₄) (l₁ : indexed_list R a₂ a₃) (r : R a₁ a₂) :
|
||
l₂ ++ concat r l₁ = concat r (l₂ ++ l₁) :=
|
||
begin
|
||
induction l₂,
|
||
{ reflexivity},
|
||
{ exact ap (cons r_1) !v_0}
|
||
end
|
||
|
||
theorem concat_append (l₂ : indexed_list R a₃ a₄) (r : R a₂ a₃) (l₁ : indexed_list R a₁ a₂) :
|
||
concat r l₂ ++ l₁ = l₂ ++ r :: l₁ :=
|
||
begin
|
||
induction l₂,
|
||
{ reflexivity},
|
||
{ exact ap (cons r) !v_0}
|
||
end
|
||
|
||
definition indexed_list.rec_tail {C : Π⦃a a' : A⦄, indexed_list R a a' → Type}
|
||
(H0 : Π {a : A}, @C a a nil)
|
||
(H1 : Π {a₁ a₂ a₃ : A} (r : R a₁ a₂) (l : indexed_list R a₂ a₃), C l → C (concat r l)) :
|
||
Π{a a' : A} (l : indexed_list R a a'), C l :=
|
||
begin
|
||
have Π{a₁ a₂ a₃ : A} (l₂ : indexed_list R a₂ a₃) (l₁ : indexed_list R a₁ a₂) (c : C l₂),
|
||
C (l₂ ++ l₁),
|
||
begin
|
||
intros, revert a₃ l₂ c, induction l₁: intros a₃ l₂ c,
|
||
{ rewrite append_nil, exact c},
|
||
{ rewrite [-concat_append], apply v_0, apply H1, exact c}
|
||
end,
|
||
intros, rewrite [-nil_append], apply this, apply H0
|
||
end
|
||
|
||
definition cons_eq_concat (r : R a₂ a₃) (l : indexed_list R a₁ a₂) :
|
||
Σa (r' : R a₁ a) (l' : indexed_list R a a₃), r :: l = concat r' l' :=
|
||
begin
|
||
revert a₃ r, induction l: intros a₃' r',
|
||
{ exact ⟨a₃', r', nil, idp⟩},
|
||
{ cases (v_0 a₃ r) with a₄ w, cases w with r₂ w, cases w with l p, clear v_0,
|
||
exact ⟨a₄, r₂, r' :: l, ap (cons r') p⟩}
|
||
end
|
||
|
||
definition length (l : indexed_list R a₁ a₂) : ℕ :=
|
||
begin
|
||
induction l,
|
||
{ exact 0},
|
||
{ exact succ v_0}
|
||
end
|
||
|
||
definition reverse (rev : Π⦃a a'⦄, R a a' → R a' a) (l : indexed_list R a₁ a₂) :
|
||
indexed_list R a₂ a₁ :=
|
||
begin
|
||
induction l,
|
||
{ exact nil},
|
||
{ exact concat (rev r) v_0}
|
||
end
|
||
|
||
theorem reverse_nil (rev : Π⦃a a'⦄, R a a' → R a' a) : reverse rev (@nil A R a₁) = [] := idp
|
||
|
||
theorem reverse_cons (rev : Π⦃a a'⦄, R a a' → R a' a) (r : R a₂ a₃) (l : indexed_list R a₁ a₂) :
|
||
reverse rev (r::l) = concat (rev r) (reverse rev l) := idp
|
||
|
||
theorem reverse_singleton (rev : Π⦃a a'⦄, R a a' → R a' a) (r : R a₁ a₂) :
|
||
reverse rev [r] = [rev r] := idp
|
||
|
||
theorem reverse_pair (rev : Π⦃a a'⦄, R a a' → R a' a) (r₂ : R a₂ a₃) (r₁ : R a₁ a₂) :
|
||
reverse rev [r₂, r₁] = [rev r₁, rev r₂] := idp
|
||
|
||
theorem reverse_concat (rev : Π⦃a a'⦄, R a a' → R a' a) (r : R a₁ a₂) (l : indexed_list R a₂ a₃) :
|
||
reverse rev (concat r l) = rev r :: (reverse rev l) :=
|
||
begin
|
||
induction l,
|
||
{ reflexivity},
|
||
{ rewrite [concat_cons, reverse_cons, v_0]}
|
||
end
|
||
|
||
theorem reverse_append (rev : Π⦃a a'⦄, R a a' → R a' a) (l₂ : indexed_list R a₂ a₃)
|
||
(l₁ : indexed_list R a₁ a₂) : reverse rev (l₂ ++ l₁) = reverse rev l₁ ++ reverse rev l₂ :=
|
||
begin
|
||
induction l₂,
|
||
{ exact !append_nil⁻¹},
|
||
{ rewrite [cons_append, +reverse_cons, append_concat, v_0]}
|
||
end
|
||
|
||
definition realize (P : A → A → Type) (f : Π⦃a a'⦄, R a a' → P a a') (ρ : Πa, P a a)
|
||
(c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃)
|
||
⦃a a' : A⦄ (l : indexed_list R a a') : P a a' :=
|
||
begin
|
||
induction l,
|
||
{ exact ρ a},
|
||
{ exact c v_0 (f r)}
|
||
end
|
||
|
||
definition realize_nil (P : A → A → Type) (f : Π⦃a a'⦄, R a a' → P a a') (ρ : Πa, P a a)
|
||
(c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃) (a : A) :
|
||
realize P f ρ c nil = ρ a :=
|
||
idp
|
||
|
||
definition realize_cons (P : A → A → Type) (f : Π⦃a a'⦄, R a a' → P a a') (ρ : Πa, P a a)
|
||
(c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃)
|
||
⦃a₁ a₂ a₃ : A⦄ (r : R a₂ a₃) (l : indexed_list R a₁ a₂) :
|
||
realize P f ρ c (r :: l) = c (realize P f ρ c l) (f r) :=
|
||
idp
|
||
|
||
theorem realize_singleton {P : A → A → Type} {f : Π⦃a a'⦄, R a a' → P a a'} {ρ : Πa, P a a}
|
||
{c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃}
|
||
(id_left : Π⦃a₁ a₂⦄ (p : P a₁ a₂), c (ρ a₁) p = p)
|
||
⦃a₁ a₂ : A⦄ (r : R a₁ a₂) :
|
||
realize P f ρ c [r] = f r :=
|
||
id_left (f r)
|
||
|
||
theorem realize_pair {P : A → A → Type} {f : Π⦃a a'⦄, R a a' → P a a'} {ρ : Πa, P a a}
|
||
{c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃}
|
||
(id_left : Π⦃a₁ a₂⦄ (p : P a₁ a₂), c (ρ a₁) p = p)
|
||
⦃a₁ a₂ a₃ : A⦄ (r₂ : R a₂ a₃) (r₁ : R a₁ a₂) :
|
||
realize P f ρ c [r₂, r₁] = c (f r₁) (f r₂) :=
|
||
ap (λx, c x (f r₂)) (realize_singleton id_left r₁)
|
||
|
||
theorem realize_append {P : A → A → Type} {f : Π⦃a a'⦄, R a a' → P a a'} {ρ : Πa, P a a}
|
||
{c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃}
|
||
(assoc : Π⦃a₁ a₂ a₃ a₄⦄ (p : P a₁ a₂) (q : P a₂ a₃) (r : P a₃ a₄), c (c p q) r = c p (c q r))
|
||
(id_right : Π⦃a₁ a₂⦄ (p : P a₁ a₂), c p (ρ a₂) = p)
|
||
⦃a₁ a₂ a₃ : A⦄ (l₂ : indexed_list R a₂ a₃) (l₁ : indexed_list R a₁ a₂) :
|
||
realize P f ρ c (l₂ ++ l₁) = c (realize P f ρ c l₁) (realize P f ρ c l₂) :=
|
||
begin
|
||
induction l₂,
|
||
{ exact !id_right⁻¹},
|
||
{ rewrite [cons_append, +realize_cons, v_0, assoc]}
|
||
end
|
||
|
||
inductive indexed_list_rel {A : Type} {R : A → A → Type}
|
||
(Q : Π⦃a a' : A⦄, indexed_list R a a' → indexed_list R a a' → Type)
|
||
: Π⦃a a' : A⦄, indexed_list R a a' → indexed_list R a a' → Type :=
|
||
| rrefl : Π{a a' : A} (l : indexed_list R a a'), indexed_list_rel Q l l
|
||
| rel : Π{a₁ a₂ a₃ : A} {l₂ l₃ : indexed_list R a₂ a₃} (l : indexed_list R a₁ a₂) (q : Q l₂ l₃),
|
||
indexed_list_rel Q (l₂ ++ l) (l₃ ++ l)
|
||
| rcons : Π{a₁ a₂ a₃ : A} {l₁ l₂ : indexed_list R a₁ a₂} (r : R a₂ a₃),
|
||
indexed_list_rel Q l₁ l₂ → indexed_list_rel Q (cons r l₁) (cons r l₂)
|
||
| rtrans : Π{a₁ a₂ : A} {l₁ l₂ l₃ : indexed_list R a₁ a₂},
|
||
indexed_list_rel Q l₁ l₂ → indexed_list_rel Q l₂ l₃ → indexed_list_rel Q l₁ l₃
|
||
|
||
open indexed_list_rel
|
||
attribute rrefl [refl]
|
||
attribute rtrans [trans]
|
||
variables {Q : Π⦃a a' : A⦄, indexed_list R a a' → indexed_list R a a' → Type}
|
||
|
||
definition indexed_list_rel_of_Q {l₁ l₂ : indexed_list R a₁ a₂} (q : Q l₁ l₂) :
|
||
indexed_list_rel Q l₁ l₂ :=
|
||
begin
|
||
rewrite [-append_nil l₁, -append_nil l₂], exact rel nil q,
|
||
end
|
||
|
||
theorem rel_respect_append_left (l : indexed_list R a₂ a₃) {l₃ l₄ : indexed_list R a₁ a₂}
|
||
(H : indexed_list_rel Q l₃ l₄) : indexed_list_rel Q (l ++ l₃) (l ++ l₄) :=
|
||
begin
|
||
induction l,
|
||
{ exact H},
|
||
{ exact rcons r (v_0 _ _ H)}
|
||
end
|
||
|
||
theorem rel_respect_append_right {l₁ l₂ : indexed_list R a₂ a₃} (l : indexed_list R a₁ a₂)
|
||
(H₁ : indexed_list_rel Q l₁ l₂) : indexed_list_rel Q (l₁ ++ l) (l₂ ++ l) :=
|
||
begin
|
||
induction H₁ with a₁ a₂ l₁
|
||
a₂ a₃ a₄ l₂ l₂' l₁ q
|
||
a₂ a₃ a₄ l₁ l₂ r H₁ IH
|
||
a₂ a₃ l₁ l₂ l₂' H₁ H₁' IH IH',
|
||
{ reflexivity},
|
||
{ rewrite [+ append_assoc], exact rel _ q},
|
||
{ exact rcons r (IH l) },
|
||
{ exact rtrans (IH l) (IH' l)}
|
||
end
|
||
|
||
theorem rel_respect_append {l₁ l₂ : indexed_list R a₂ a₃} {l₃ l₄ : indexed_list R a₁ a₂}
|
||
(H₁ : indexed_list_rel Q l₁ l₂) (H₂ : indexed_list_rel Q l₃ l₄) :
|
||
indexed_list_rel Q (l₁ ++ l₃) (l₂ ++ l₄) :=
|
||
begin
|
||
induction H₁ with a₁ a₂ l
|
||
a₂ a₃ a₄ l₂ l₂' l q
|
||
a₂ a₃ a₄ l₁ l₂ r H₁ IH
|
||
a₂ a₃ l₁ l₂ l₂' H₁ H₁' IH IH',
|
||
{ exact rel_respect_append_left _ H₂},
|
||
{ rewrite [+ append_assoc], transitivity _, exact rel _ q,
|
||
apply rel_respect_append_left, apply rel_respect_append_left, exact H₂},
|
||
{ exact rcons r (IH _ _ H₂) },
|
||
{ refine rtrans (IH _ _ H₂) _, apply rel_respect_append_right, exact H₁'}
|
||
end
|
||
|
||
theorem rel_respect_reverse (rev : Π⦃a a'⦄, R a a' → R a' a) {l₁ l₂ : indexed_list R a₁ a₂}
|
||
(H : indexed_list_rel Q l₁ l₂)
|
||
(rev_rel : Π⦃a a' : A⦄ {l l' : indexed_list R a a'},
|
||
Q l l' → indexed_list_rel Q (reverse rev l) (reverse rev l')) :
|
||
indexed_list_rel Q (reverse rev l₁) (reverse rev l₂) :=
|
||
begin
|
||
induction H,
|
||
{ reflexivity},
|
||
{ rewrite [+ reverse_append], apply rel_respect_append_left, apply rev_rel q},
|
||
{ rewrite [+reverse_cons,-+append_singleton], apply rel_respect_append_right, exact v_0},
|
||
{ exact rtrans v_0 v_1}
|
||
end
|
||
|
||
theorem rel_left_inv (rev : Π⦃a a'⦄, R a a' → R a' a) (l : indexed_list R a₁ a₂)
|
||
(li : Π⦃a a' : A⦄ (r : R a a'), indexed_list_rel Q [rev r, r] nil) :
|
||
indexed_list_rel Q (reverse rev l ++ l) nil :=
|
||
begin
|
||
induction l,
|
||
{ reflexivity},
|
||
{ rewrite [reverse_cons, concat_append],
|
||
refine rtrans _ v_0, apply rel_respect_append_left,
|
||
exact rel_respect_append_right _ (li r)}
|
||
end
|
||
|
||
theorem rel_right_inv (rev : Π⦃a a'⦄, R a a' → R a' a) (l : indexed_list R a₁ a₂)
|
||
(ri : Π⦃a a' : A⦄ (r : R a a'), indexed_list_rel Q [r, rev r] nil) :
|
||
indexed_list_rel Q (l ++ reverse rev l) nil :=
|
||
begin
|
||
induction l using indexed_list.rec_tail,
|
||
{ reflexivity},
|
||
{ rewrite [reverse_concat, concat_append],
|
||
refine rtrans _ a, apply rel_respect_append_left,
|
||
exact rel_respect_append_right _ (ri r)}
|
||
end
|
||
|
||
definition realize_eq {P : A → A → Type} {f : Π⦃a a'⦄, R a a' → P a a'} {ρ : Πa, P a a}
|
||
{c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃}
|
||
(assoc : Π⦃a₁ a₂ a₃ a₄⦄ (p : P a₁ a₂) (q : P a₂ a₃) (r : P a₃ a₄), c (c p q) r = c p (c q r))
|
||
(id_right : Π⦃a₁ a₂⦄ (p : P a₁ a₂), c p (ρ a₂) = p)
|
||
(resp_rel : Π⦃a₁ a₂⦄ {l₁ l₂ : indexed_list R a₁ a₂}, Q l₁ l₂ →
|
||
realize P f ρ c l₁ = realize P f ρ c l₂)
|
||
⦃a a' : A⦄ {l l' : indexed_list R a a'} (H : indexed_list_rel Q l l') :
|
||
realize P f ρ c l = realize P f ρ c l' :=
|
||
begin
|
||
induction H,
|
||
{ reflexivity},
|
||
{ rewrite [+realize_append assoc id_right], apply ap (c _), exact resp_rel q},
|
||
{ exact ap (λx, c x (f r)) v_0},
|
||
{ exact v_0 ⬝ v_1}
|
||
end
|
||
|
||
|
||
end indexed_list
|
||
namespace indexed_list
|
||
section
|
||
parameters {A : Type} {R : A → A → Type}
|
||
(Q : Π⦃a a' : A⦄, indexed_list R a a' → indexed_list R a a' → Type)
|
||
variables ⦃a a' a₁ a₂ a₃ a₄ : A⦄
|
||
definition indexed_list_trel [constructor] (l l' : indexed_list R a a') : Prop :=
|
||
∥indexed_list_rel Q l l'∥
|
||
|
||
local notation `S` := @indexed_list_trel
|
||
definition indexed_list_quotient (a a' : A) : Type := set_quotient (@S a a')
|
||
local notation `mor` := indexed_list_quotient
|
||
local attribute indexed_list_quotient [reducible]
|
||
|
||
definition is_reflexive_R : is_reflexive (@S a a') :=
|
||
begin constructor, intro s, apply tr, constructor end
|
||
local attribute is_reflexive_R [instance]
|
||
|
||
definition indexed_list_compose [unfold 7 8] (g : mor a₂ a₃) (f : mor a₁ a₂) : mor a₁ a₃ :=
|
||
begin
|
||
refine quotient_binary_map _ _ g f, exact append,
|
||
intros, refine trunc_functor2 _ r s, exact rel_respect_append
|
||
end
|
||
|
||
definition indexed_list_id [constructor] (a : A) : mor a a :=
|
||
class_of nil
|
||
|
||
local infix ` ∘∘ `:60 := indexed_list_compose
|
||
local notation `p1` := indexed_list_id _
|
||
|
||
theorem indexed_list_assoc (h : mor a₃ a₄) (g : mor a₂ a₃) (f : mor a₁ a₂) :
|
||
h ∘∘ (g ∘∘ f) = (h ∘∘ g) ∘∘ f :=
|
||
begin
|
||
induction h using set_quotient.rec_prop with h,
|
||
induction g using set_quotient.rec_prop with g,
|
||
induction f using set_quotient.rec_prop with f,
|
||
rewrite [▸*, append_assoc]
|
||
end
|
||
|
||
theorem indexed_list_id_left (f : mor a a') : p1 ∘∘ f = f :=
|
||
begin
|
||
induction f using set_quotient.rec_prop with f,
|
||
reflexivity
|
||
end
|
||
|
||
theorem indexed_list_id_right (f : mor a a') : f ∘∘ p1 = f :=
|
||
begin
|
||
induction f using set_quotient.rec_prop with f,
|
||
rewrite [▸*, append_nil]
|
||
end
|
||
|
||
definition Precategory_indexed_list [constructor] : Precategory :=
|
||
precategory.MK A
|
||
mor
|
||
_
|
||
indexed_list_compose
|
||
indexed_list_id
|
||
indexed_list_assoc
|
||
indexed_list_id_left
|
||
indexed_list_id_right
|
||
|
||
parameters (inv : Π⦃a a' : A⦄, R a a' → R a' a)
|
||
(rel_inv : Π⦃a a' : A⦄ {l l' : indexed_list R a a'},
|
||
Q l l' → indexed_list_rel Q (reverse inv l) (reverse inv l'))
|
||
(li : Π⦃a a' : A⦄ (r : R a a'), indexed_list_rel Q [inv r, r] nil)
|
||
(ri : Π⦃a a' : A⦄ (r : R a a'), indexed_list_rel Q [r, inv r] nil)
|
||
|
||
include rel_inv li ri
|
||
definition indexed_list_inv [unfold 8] (f : mor a a') : mor a' a :=
|
||
begin
|
||
refine quotient_unary_map (reverse inv) _ f,
|
||
intros, refine trunc_functor _ _ r, esimp,
|
||
intro s, apply rel_respect_reverse inv s rel_inv
|
||
end
|
||
|
||
local postfix `^`:max := indexed_list_inv
|
||
|
||
theorem indexed_list_left_inv (f : mor a₁ a₂) : f^ ∘∘ f = p1 :=
|
||
begin
|
||
induction f using set_quotient.rec_prop with f,
|
||
esimp, apply eq_of_rel, apply tr,
|
||
apply rel_left_inv, apply li
|
||
end
|
||
|
||
theorem indexed_list_right_inv (f : mor a₁ a₂) : f ∘∘ f^ = p1 :=
|
||
begin
|
||
induction f using set_quotient.rec_prop with f,
|
||
esimp, apply eq_of_rel, apply tr,
|
||
apply rel_right_inv, apply ri
|
||
end
|
||
|
||
definition Groupoid_indexed_list [constructor] : Groupoid :=
|
||
groupoid.MK Precategory_indexed_list
|
||
(λa b f, is_iso.mk (indexed_list_inv f) (indexed_list_left_inv f) (indexed_list_right_inv f))
|
||
|
||
end
|
||
|
||
|
||
end indexed_list
|
||
open indexed_list
|
||
|
||
namespace category
|
||
|
||
inductive pushout_prehom_index {C D E : Precategory} (F : C ⇒ D) (G : C ⇒ E) :
|
||
D + E → D + E → Type :=
|
||
| iD : Π{d d' : D} (f : d ⟶ d'), pushout_prehom_index F G (inl d) (inl d')
|
||
| iE : Π{e e' : E} (g : e ⟶ e'), pushout_prehom_index F G (inr e) (inr e')
|
||
| DE : Π(c : C), pushout_prehom_index F G (inl (F c)) (inr (G c))
|
||
| ED : Π(c : C), pushout_prehom_index F G (inr (G c)) (inl (F c))
|
||
|
||
open pushout_prehom_index
|
||
|
||
definition pushout_prehom {C D E : Precategory} (F : C ⇒ D) (G : C ⇒ E) : D + E → D + E → Type :=
|
||
indexed_list (pushout_prehom_index F G)
|
||
|
||
inductive pushout_hom_rel_index {C D E : Precategory} (F : C ⇒ D) (G : C ⇒ E) :
|
||
Π⦃x x' : D + E⦄, pushout_prehom F G x x' → pushout_prehom F G x x' → Type :=
|
||
| DD : Π{d₁ d₂ d₃ : D} (g : d₂ ⟶ d₃) (f : d₁ ⟶ d₂),
|
||
pushout_hom_rel_index F G [iD F G g, iD F G f] [iD F G (g ∘ f)]
|
||
| EE : Π{e₁ e₂ e₃ : E} (g : e₂ ⟶ e₃) (f : e₁ ⟶ e₂),
|
||
pushout_hom_rel_index F G [iE F G g, iE F G f] [iE F G (g ∘ f)]
|
||
| DED : Π(c : C), pushout_hom_rel_index F G [ED F G c, DE F G c] nil
|
||
| EDE : Π(c : C), pushout_hom_rel_index F G [DE F G c, ED F G c] nil
|
||
| idD : Π(d : D), pushout_hom_rel_index F G [iD F G (ID d)] nil
|
||
| idE : Π(e : E), pushout_hom_rel_index F G [iE F G (ID e)] nil
|
||
|
||
open pushout_hom_rel_index
|
||
-- section
|
||
-- parameters {C D E : Precategory} (F : C ⇒ D) (G : C ⇒ E)
|
||
-- local notation `ob` := D + E
|
||
-- variables ⦃x x' x₁ x₂ x₃ x₄ : ob⦄
|
||
|
||
-- definition pushout_hom_rel [constructor] (l l' : pushout_prehom F G x x') : Prop :=
|
||
-- ∥indexed_list_rel (pushout_hom_rel_index F G) l l'∥
|
||
|
||
-- local notation `R` := @pushout_hom_rel
|
||
-- definition pushout_hom (x x' : ob) : Type := set_quotient (@R x x')
|
||
-- local notation `mor` := @pushout_hom
|
||
-- local attribute pushout_hom [reducible]
|
||
|
||
-- definition is_reflexive_R : is_reflexive (@R x x') :=
|
||
-- begin constructor, intro s, apply tr, constructor end
|
||
-- local attribute is_reflexive_R [instance]
|
||
|
||
-- definition pushout_compose [unfold 9 10] (g : mor x₂ x₃) (f : mor x₁ x₂) : mor x₁ x₃ :=
|
||
-- begin
|
||
-- refine quotient_binary_map _ _ g f, exact append,
|
||
-- intros, refine trunc_functor2 _ r s, exact rel_respect_append
|
||
-- end
|
||
|
||
-- definition pushout_id [constructor] (x : ob) : mor x x :=
|
||
-- class_of nil
|
||
|
||
-- local infix ` ∘∘ `:60 := pushout_compose
|
||
-- local notation `p1` := pushout_id _
|
||
|
||
-- theorem pushout_assoc (h : mor x₃ x₄) (g : mor x₂ x₃) (f : mor x₁ x₂) :
|
||
-- h ∘∘ (g ∘∘ f) = (h ∘∘ g) ∘∘ f :=
|
||
-- begin
|
||
-- induction h using set_quotient.rec_prop with h,
|
||
-- induction g using set_quotient.rec_prop with g,
|
||
-- induction f using set_quotient.rec_prop with f,
|
||
-- rewrite [▸*, append_assoc]
|
||
-- end
|
||
|
||
-- theorem pushout_id_left (f : mor x x') : p1 ∘∘ f = f :=
|
||
-- begin
|
||
-- induction f using set_quotient.rec_prop with f,
|
||
-- reflexivity
|
||
-- end
|
||
|
||
-- theorem pushout_id_right (f : mor x x') : f ∘∘ p1 = f :=
|
||
-- begin
|
||
-- induction f using set_quotient.rec_prop with f,
|
||
-- rewrite [▸*, append_nil]
|
||
-- end
|
||
|
||
definition Precategory_pushout [constructor] {C D E : Precategory} (F : C ⇒ D) (G : C ⇒ E) :
|
||
Precategory :=
|
||
Precategory_indexed_list (pushout_hom_rel_index F G)
|
||
-- precategory.MK ob
|
||
-- mor
|
||
-- _
|
||
-- pushout_compose
|
||
-- pushout_id
|
||
-- pushout_assoc
|
||
-- pushout_id_left
|
||
-- pushout_id_right
|
||
|
||
-- end
|
||
|
||
variables {C D E : Groupoid} (F : C ⇒ D) (G : C ⇒ E)
|
||
variables ⦃x x' x₁ x₂ x₃ x₄ : Precategory_pushout F G⦄
|
||
|
||
definition pushout_index_inv [unfold 8] (i : pushout_prehom_index F G x x') :
|
||
pushout_prehom_index F G x' x :=
|
||
begin
|
||
induction i,
|
||
{ exact iD F G f⁻¹},
|
||
{ exact iE F G g⁻¹},
|
||
{ exact ED F G c},
|
||
{ exact DE F G c},
|
||
end
|
||
|
||
open indexed_list.indexed_list_rel
|
||
theorem pushout_index_reverse {l l' : pushout_prehom F G x x'}
|
||
(q : pushout_hom_rel_index F G l l') : indexed_list_rel (pushout_hom_rel_index F G)
|
||
(reverse (pushout_index_inv F G) l) (reverse (pushout_index_inv F G) l') :=
|
||
begin
|
||
induction q: apply indexed_list_rel_of_Q;
|
||
try rewrite reverse_singleton; try rewrite reverse_pair; try rewrite reverse_nil; esimp;
|
||
try rewrite [comp_inverse]; try rewrite [id_inverse]; constructor,
|
||
end
|
||
|
||
theorem pushout_index_li (i : pushout_prehom_index F G x x') :
|
||
indexed_list_rel (pushout_hom_rel_index F G) [pushout_index_inv F G i, i] nil :=
|
||
begin
|
||
induction i: esimp,
|
||
{ refine rtrans (indexed_list_rel_of_Q !DD) _,
|
||
rewrite [comp.left_inverse], exact indexed_list_rel_of_Q !idD},
|
||
{ refine rtrans (indexed_list_rel_of_Q !EE) _,
|
||
rewrite [comp.left_inverse], exact indexed_list_rel_of_Q !idE},
|
||
{ exact indexed_list_rel_of_Q !DED},
|
||
{ exact indexed_list_rel_of_Q !EDE}
|
||
end
|
||
|
||
theorem pushout_index_ri (i : pushout_prehom_index F G x x') :
|
||
indexed_list_rel (pushout_hom_rel_index F G) [i, pushout_index_inv F G i] nil :=
|
||
begin
|
||
induction i: esimp,
|
||
{ refine rtrans (indexed_list_rel_of_Q !DD) _,
|
||
rewrite [comp.right_inverse], exact indexed_list_rel_of_Q !idD},
|
||
{ refine rtrans (indexed_list_rel_of_Q !EE) _,
|
||
rewrite [comp.right_inverse], exact indexed_list_rel_of_Q !idE},
|
||
{ exact indexed_list_rel_of_Q !EDE},
|
||
{ exact indexed_list_rel_of_Q !DED}
|
||
end
|
||
|
||
definition Groupoid_pushout [constructor] : Groupoid :=
|
||
Groupoid_indexed_list (pushout_hom_rel_index F G) (pushout_index_inv F G)
|
||
(pushout_index_reverse F G) (pushout_index_li F G) (pushout_index_ri F G)
|
||
|
||
|
||
end category
|