5cacebcf86
The coercion A ≃ B -> (A -> B) is now in namespace equiv. The notation ⁻¹ for symmetry of equivalences is not supported anymore. Use ⁻¹ᵉ
549 lines
18 KiB
Text
549 lines
18 KiB
Text
/-
|
||
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jakob von Raumer, Floris van Doorn
|
||
|
||
Ported from Coq HoTT
|
||
-/
|
||
|
||
import arity .eq .bool .unit .sigma .nat.basic prop_trunc
|
||
open is_trunc eq prod sigma nat equiv option is_equiv bool unit algebra sigma.ops
|
||
|
||
structure pointed [class] (A : Type) :=
|
||
(point : A)
|
||
|
||
structure pType :=
|
||
(carrier : Type)
|
||
(Point : carrier)
|
||
|
||
notation `Type*` := pType
|
||
|
||
section
|
||
universe variable u
|
||
structure ptrunctype (n : trunc_index) extends trunctype.{u} n, pType.{u}
|
||
end
|
||
|
||
notation n `-Type*` := ptrunctype n
|
||
abbreviation pSet [parsing_only] := 0-Type*
|
||
notation `Set*` := pSet
|
||
|
||
namespace pointed
|
||
attribute pType.carrier [coercion]
|
||
variables {A B : Type}
|
||
|
||
definition pt [unfold 2] [H : pointed A] := point A
|
||
definition Point [unfold 1] (A : Type*) := pType.Point A
|
||
abbreviation carrier [unfold 1] (A : Type*) := pType.carrier A
|
||
protected definition Mk [constructor] {A : Type} (a : A) := pType.mk A a
|
||
protected definition MK [constructor] (A : Type) (a : A) := pType.mk A a
|
||
protected definition mk' [constructor] (A : Type) [H : pointed A] : Type* :=
|
||
pType.mk A (point A)
|
||
definition pointed_carrier [instance] [constructor] (A : Type*) : pointed A :=
|
||
pointed.mk (Point A)
|
||
|
||
-- Any contractible type is pointed
|
||
definition pointed_of_is_contr [instance] [priority 800] [constructor]
|
||
(A : Type) [H : is_contr A] : pointed A :=
|
||
pointed.mk !center
|
||
|
||
-- A pi type with a pointed target is pointed
|
||
definition pointed_pi [instance] [constructor] (P : A → Type) [H : Πx, pointed (P x)]
|
||
: pointed (Πx, P x) :=
|
||
pointed.mk (λx, pt)
|
||
|
||
-- A sigma type of pointed components is pointed
|
||
definition pointed_sigma [instance] [constructor] (P : A → Type) [G : pointed A]
|
||
[H : pointed (P pt)] : pointed (Σx, P x) :=
|
||
pointed.mk ⟨pt,pt⟩
|
||
|
||
definition pointed_prod [instance] [constructor] (A B : Type) [H1 : pointed A] [H2 : pointed B]
|
||
: pointed (A × B) :=
|
||
pointed.mk (pt,pt)
|
||
|
||
definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) :=
|
||
pointed.mk idp
|
||
|
||
definition pointed_bool [instance] [constructor] : pointed bool :=
|
||
pointed.mk ff
|
||
|
||
definition pprod [constructor] (A B : Type*) : Type* :=
|
||
pointed.mk' (A × B)
|
||
|
||
infixr ` ×* `:35 := pprod
|
||
|
||
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
|
||
pointed.mk (f pt)
|
||
|
||
definition ploop_space [reducible] [constructor] (A : Type*) : Type* :=
|
||
pointed.mk' (point A = point A)
|
||
|
||
definition iterated_ploop_space [reducible] : ℕ → Type* → Type*
|
||
| iterated_ploop_space 0 X := X
|
||
| iterated_ploop_space (n+1) X := ploop_space (iterated_ploop_space n X)
|
||
|
||
prefix `Ω`:(max+5) := ploop_space
|
||
notation `Ω[`:95 n:0 `] `:0 A:95 := iterated_ploop_space n A
|
||
|
||
definition iterated_ploop_space_zero [unfold_full] (A : Type*)
|
||
: Ω[0] A = A := rfl
|
||
|
||
definition iterated_ploop_space_succ [unfold_full] (k : ℕ) (A : Type*)
|
||
: Ω[succ k] A = Ω Ω[k] A := rfl
|
||
|
||
definition rfln [constructor] [reducible] {A : Type*} {n : ℕ} : Ω[n] A := pt
|
||
definition refln [constructor] [reducible] (A : Type*) (n : ℕ) : Ω[n] A := pt
|
||
definition refln_eq_refl (A : Type*) (n : ℕ) : rfln = rfl :> Ω[succ n] A := rfl
|
||
|
||
definition iterated_loop_space [unfold 3] (A : Type) [H : pointed A] (n : ℕ) : Type :=
|
||
Ω[n] (pointed.mk' A)
|
||
|
||
definition pType_eq {A B : Type*} (f : A ≃ B) (p : f pt = pt) : A = B :=
|
||
begin
|
||
cases A with A a, cases B with B b, esimp at *,
|
||
fapply apd011 @pType.mk,
|
||
{ apply ua f},
|
||
{ rewrite [cast_ua,p]},
|
||
end
|
||
|
||
definition pType_eq_elim {A B : Type*} (p : A = B :> Type*)
|
||
: Σ(p : carrier A = carrier B :> Type), cast p pt = pt :=
|
||
by induction p; exact ⟨idp, idp⟩
|
||
|
||
protected definition pType.sigma_char.{u} : pType.{u} ≃ Σ(X : Type.{u}), X :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro x, induction x with X x, exact ⟨X, x⟩},
|
||
{ intro x, induction x with X x, exact pointed.MK X x},
|
||
{ intro x, induction x with X x, reflexivity},
|
||
{ intro x, induction x with X x, reflexivity},
|
||
end
|
||
|
||
definition add_point [constructor] (A : Type) : Type* :=
|
||
pointed.Mk (none : option A)
|
||
postfix `₊`:(max+1) := add_point
|
||
-- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A")
|
||
|
||
end pointed open pointed
|
||
|
||
protected definition ptrunctype.mk' [constructor] (n : trunc_index)
|
||
(A : Type) [pointed A] [is_trunc n A] : n-Type* :=
|
||
ptrunctype.mk A _ pt
|
||
|
||
protected definition pSet.mk [constructor] := @ptrunctype.mk (-1.+1)
|
||
protected definition pSet.mk' [constructor] := ptrunctype.mk' (-1.+1)
|
||
|
||
definition ptrunctype_of_trunctype [constructor] {n : trunc_index} (A : n-Type) (a : A) : n-Type* :=
|
||
ptrunctype.mk A _ a
|
||
|
||
definition ptrunctype_of_pType [constructor] {n : trunc_index} (A : Type*) (H : is_trunc n A)
|
||
: n-Type* :=
|
||
ptrunctype.mk A _ pt
|
||
|
||
definition pSet_of_Set [constructor] (A : Set) (a : A) : Set* :=
|
||
ptrunctype.mk A _ a
|
||
|
||
definition pSet_of_pType [constructor] (A : Type*) (H : is_set A) : Set* :=
|
||
ptrunctype.mk A _ pt
|
||
|
||
attribute pType._trans_to_carrier ptrunctype.to_pType ptrunctype.to_trunctype [unfold 2]
|
||
|
||
definition ptrunctype_eq {n : trunc_index} {A B : n-Type*} (p : A = B :> Type) (q : cast p pt = pt)
|
||
: A = B :=
|
||
begin
|
||
induction A with A HA a, induction B with B HB b, esimp at *,
|
||
induction p, induction q,
|
||
esimp,
|
||
refine ap010 (ptrunctype.mk A) _ a,
|
||
exact !is_prop.elim
|
||
end
|
||
|
||
definition ptrunctype_eq_of_pType_eq {n : trunc_index} {A B : n-Type*} (p : A = B :> Type*)
|
||
: A = B :=
|
||
begin
|
||
cases pType_eq_elim p with q r,
|
||
exact ptrunctype_eq q r
|
||
end
|
||
|
||
|
||
namespace pointed
|
||
|
||
definition pbool [constructor] : Set* :=
|
||
pSet.mk' bool
|
||
|
||
definition punit [constructor] : Set* :=
|
||
pSet.mk' unit
|
||
|
||
/- properties of iterated loop space -/
|
||
variable (A : Type*)
|
||
definition loop_space_succ_eq_in (n : ℕ) : Ω[succ n] A = Ω[n] (Ω A) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact ap ploop_space IH}
|
||
end
|
||
|
||
definition loop_space_add (n m : ℕ) : Ω[n] (Ω[m] A) = Ω[m+n] (A) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact ap ploop_space IH}
|
||
end
|
||
|
||
definition loop_space_succ_eq_out (n : ℕ) : Ω[succ n] A = Ω(Ω[n] A) :=
|
||
idp
|
||
|
||
variable {A}
|
||
|
||
/- the equality [loop_space_succ_eq_in] preserves concatenation -/
|
||
theorem loop_space_succ_eq_in_concat {n : ℕ} (p q : Ω[succ (succ n)] A) :
|
||
transport carrier (ap ploop_space (loop_space_succ_eq_in A n)) (p ⬝ q)
|
||
= transport carrier (ap ploop_space (loop_space_succ_eq_in A n)) p
|
||
⬝ transport carrier (ap ploop_space (loop_space_succ_eq_in A n)) q :=
|
||
begin
|
||
rewrite [-+tr_compose, ↑function.compose],
|
||
rewrite [+@transport_eq_FlFr_D _ _ _ _ Point Point, +con.assoc], apply whisker_left,
|
||
rewrite [-+con.assoc], apply whisker_right, rewrite [con_inv_cancel_right, ▸*, -ap_con]
|
||
end
|
||
|
||
definition loop_space_loop_irrel (p : point A = point A) : Ω(pointed.Mk p) = Ω[2] A :=
|
||
begin
|
||
intros, fapply pType_eq,
|
||
{ esimp, transitivity _,
|
||
apply eq_equiv_fn_eq_of_equiv (equiv_eq_closed_right _ p⁻¹),
|
||
esimp, apply eq_equiv_eq_closed, apply con.right_inv, apply con.right_inv},
|
||
{ esimp, apply con.left_inv}
|
||
end
|
||
|
||
definition iterated_loop_space_loop_irrel (n : ℕ) (p : point A = point A)
|
||
: Ω[succ n](pointed.Mk p) = Ω[succ (succ n)] A :> pType :=
|
||
calc
|
||
Ω[succ n](pointed.Mk p) = Ω[n](Ω (pointed.Mk p)) : loop_space_succ_eq_in
|
||
... = Ω[n] (Ω[2] A) : loop_space_loop_irrel
|
||
... = Ω[2+n] A : loop_space_add
|
||
... = Ω[n+2] A : by rewrite [algebra.add.comm]
|
||
|
||
end pointed open pointed
|
||
|
||
/- pointed maps -/
|
||
structure pmap (A B : Type*) :=
|
||
(to_fun : A → B)
|
||
(resp_pt : to_fun (Point A) = Point B)
|
||
|
||
namespace pointed
|
||
abbreviation respect_pt [unfold 3] := @pmap.resp_pt
|
||
notation `map₊` := pmap
|
||
infix ` →* `:30 := pmap
|
||
attribute pmap.to_fun [coercion]
|
||
end pointed open pointed
|
||
|
||
/- pointed homotopies -/
|
||
structure phomotopy {A B : Type*} (f g : A →* B) :=
|
||
(homotopy : f ~ g)
|
||
(homotopy_pt : homotopy pt ⬝ respect_pt g = respect_pt f)
|
||
|
||
namespace pointed
|
||
variables {A B C D : Type*} {f g h : A →* B}
|
||
|
||
infix ` ~* `:50 := phomotopy
|
||
abbreviation to_homotopy_pt [unfold 5] := @phomotopy.homotopy_pt
|
||
abbreviation to_homotopy [coercion] [unfold 5] (p : f ~* g) : Πa, f a = g a :=
|
||
phomotopy.homotopy p
|
||
|
||
/- categorical properties of pointed maps -/
|
||
|
||
definition pid [constructor] [refl] (A : Type*) : A →* A :=
|
||
pmap.mk id idp
|
||
|
||
definition pcompose [constructor] [trans] (g : B →* C) (f : A →* B) : A →* C :=
|
||
pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g)
|
||
|
||
infixr ` ∘* `:60 := pcompose
|
||
|
||
definition passoc (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) :=
|
||
begin
|
||
fconstructor, intro a, reflexivity,
|
||
cases A, cases B, cases C, cases D, cases f with f pf, cases g with g pg, cases h with h ph,
|
||
esimp at *,
|
||
induction pf, induction pg, induction ph, reflexivity
|
||
end
|
||
|
||
definition pid_comp (f : A →* B) : pid B ∘* f ~* f :=
|
||
begin
|
||
fconstructor,
|
||
{ intro a, reflexivity},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition comp_pid (f : A →* B) : f ∘* pid A ~* f :=
|
||
begin
|
||
fconstructor,
|
||
{ intro a, reflexivity},
|
||
{ reflexivity}
|
||
end
|
||
|
||
/- equivalences and equalities -/
|
||
|
||
definition pmap_eq (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g :=
|
||
begin
|
||
cases f with f p, cases g with g q,
|
||
esimp at *,
|
||
fapply apo011 pmap.mk,
|
||
{ exact eq_of_homotopy r},
|
||
{ apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con,
|
||
rewrite [ap_eq_ap10,↑ap10,apd10_eq_of_homotopy,s]}
|
||
end
|
||
|
||
definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f a, cases f with f p, exact f (some a)},
|
||
{ intro f, fconstructor,
|
||
intro a, cases a, exact pt, exact f a,
|
||
reflexivity},
|
||
{ intro f, reflexivity},
|
||
{ intro f, cases f with f p, esimp, fapply pmap_eq,
|
||
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
|
||
{ esimp, exact !con.left_inv⁻¹}},
|
||
end
|
||
|
||
definition pmap_equiv_right (A : Type*) (B : Type)
|
||
: (Σ(b : B), A →* (pointed.Mk b)) ≃ (A → B) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro u a, exact pmap.to_fun u.2 a},
|
||
{ intro f, refine ⟨f pt, _⟩, fapply pmap.mk,
|
||
intro a, esimp, exact f a,
|
||
reflexivity},
|
||
{ intro f, reflexivity},
|
||
{ intro u, cases u with b f, cases f with f p, esimp at *, induction p,
|
||
reflexivity}
|
||
end
|
||
|
||
definition pmap_bool_equiv (B : Type*) : (pbool →* B) ≃ B :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f, cases f with f p, exact f tt},
|
||
{ intro b, fconstructor,
|
||
intro u, cases u, exact pt, exact b,
|
||
reflexivity},
|
||
{ intro b, reflexivity},
|
||
{ intro f, cases f with f p, esimp, fapply pmap_eq,
|
||
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
|
||
{ esimp, exact !con.left_inv⁻¹}},
|
||
end
|
||
|
||
-- The constant pointed map between any two types
|
||
definition pconst [constructor] (A B : Type*) : A →* B :=
|
||
pmap.mk (λ a, Point B) idp
|
||
|
||
-- the pointed type of pointed maps
|
||
definition ppmap [constructor] (A B : Type*) : Type* :=
|
||
pType.mk (A →* B) (pconst A B)
|
||
|
||
/- instances of pointed maps -/
|
||
|
||
definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B :=
|
||
begin
|
||
fconstructor,
|
||
{ intro p, exact !respect_pt⁻¹ ⬝ ap f p ⬝ !respect_pt},
|
||
{ esimp, apply con.left_inv}
|
||
end
|
||
|
||
definition apn (n : ℕ) (f : map₊ A B) : Ω[n] A →* Ω[n] B :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact f},
|
||
{ esimp [iterated_ploop_space], exact ap1 IH}
|
||
end
|
||
|
||
prefix `Ω→`:(max+5) := ap1
|
||
notation `Ω→[`:95 n:0 `] `:0 f:95 := apn n f
|
||
|
||
definition apn_zero (f : map₊ A B) : Ω→[0] f = f := idp
|
||
definition apn_succ (n : ℕ) (f : map₊ A B) : Ω→[n + 1] f = ap1 (Ω→[n] f) := idp
|
||
|
||
definition pcast [constructor] {A B : Type*} (p : A = B) : A →* B :=
|
||
proof pmap.mk (cast (ap pType.carrier p)) (by induction p; reflexivity) qed
|
||
|
||
definition pinverse [constructor] {X : Type*} : Ω X →* Ω X :=
|
||
pmap.mk eq.inverse idp
|
||
|
||
/- categorical properties of pointed homotopies -/
|
||
|
||
protected definition phomotopy.refl [constructor] [refl] (f : A →* B) : f ~* f :=
|
||
begin
|
||
fconstructor,
|
||
{ intro a, exact idp},
|
||
{ apply idp_con}
|
||
end
|
||
|
||
protected definition phomotopy.rfl [constructor] {A B : Type*} {f : A →* B} : f ~* f :=
|
||
phomotopy.refl f
|
||
|
||
protected definition phomotopy.trans [constructor] [trans] (p : f ~* g) (q : g ~* h)
|
||
: f ~* h :=
|
||
phomotopy.mk (λa, p a ⬝ q a)
|
||
abstract begin
|
||
induction f, induction g, induction p with p p', induction q with q q', esimp at *,
|
||
induction p', induction q', esimp, apply con.assoc
|
||
end end
|
||
|
||
protected definition phomotopy.symm [constructor] [symm] (p : f ~* g) : g ~* f :=
|
||
phomotopy.mk (λa, (p a)⁻¹)
|
||
abstract begin
|
||
induction f, induction p with p p', esimp at *,
|
||
induction p', esimp, apply inv_con_cancel_left
|
||
end end
|
||
|
||
infix ` ⬝* `:75 := phomotopy.trans
|
||
postfix `⁻¹*`:(max+1) := phomotopy.symm
|
||
|
||
/- properties about the given pointed maps -/
|
||
|
||
definition is_equiv_ap1 {A B : Type*} (f : A →* B) [is_equiv f] : is_equiv (ap1 f) :=
|
||
begin
|
||
induction B with B b, induction f with f pf, esimp at *, cases pf, esimp,
|
||
apply is_equiv.homotopy_closed (ap f),
|
||
intro p, exact !idp_con⁻¹
|
||
end
|
||
|
||
definition is_equiv_apn {A B : Type*} (n : ℕ) (f : A →* B) [H : is_equiv f]
|
||
: is_equiv (apn n f) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact H},
|
||
{ exact is_equiv_ap1 (apn n f)}
|
||
end
|
||
|
||
definition ap1_id [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro p, esimp, refine !idp_con ⬝ !ap_id},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition ap1_pinverse {A : Type*} : ap1 (@pinverse A) ~* @pinverse (Ω A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro p, esimp, refine !idp_con ⬝ _, exact !inverse_eq_inverse2⁻¹ },
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition ap1_compose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f :=
|
||
begin
|
||
induction B, induction C, induction g with g pg, induction f with f pf, esimp at *,
|
||
induction pg, induction pf,
|
||
fconstructor,
|
||
{ intro p, esimp, apply whisker_left, exact ap_compose g f p ⬝ ap (ap g) !idp_con⁻¹},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition ap1_compose_pinverse (f : A →* B) : ap1 f ∘* pinverse ~* pinverse ∘* ap1 f :=
|
||
begin
|
||
fconstructor,
|
||
{ intro p, esimp, refine !con.assoc ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left,
|
||
refine whisker_right !ap_inv _ ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left,
|
||
exact !inv_inv⁻¹},
|
||
{ induction B with B b, induction f with f pf, esimp at *, induction pf, reflexivity},
|
||
end
|
||
|
||
theorem ap1_con (f : A →* B) (p q : Ω A) : ap1 f (p ⬝ q) = ap1 f p ⬝ ap1 f q :=
|
||
begin
|
||
rewrite [▸*,ap_con, +con.assoc, con_inv_cancel_left], repeat apply whisker_left
|
||
end
|
||
|
||
theorem ap1_inv (f : A →* B) (p : Ω A) : ap1 f p⁻¹ = (ap1 f p)⁻¹ :=
|
||
begin
|
||
rewrite [▸*,ap_inv, +con_inv, inv_inv, +con.assoc], repeat apply whisker_left
|
||
end
|
||
|
||
definition pcast_ap_loop_space {A B : Type*} (p : A = B)
|
||
: pcast (ap ploop_space p) ~* Ω→ (pcast p) :=
|
||
begin
|
||
induction p, exact !ap1_id⁻¹*
|
||
end
|
||
|
||
definition pinverse_con [constructor] {X : Type*} (p q : Ω X)
|
||
: pinverse (p ⬝ q) = pinverse q ⬝ pinverse p :=
|
||
!con_inv
|
||
|
||
definition pinverse_inv [constructor] {X : Type*} (p : Ω X)
|
||
: pinverse p⁻¹ = (pinverse p)⁻¹ :=
|
||
idp
|
||
|
||
/- more on pointed homotopies -/
|
||
|
||
definition phomotopy_of_eq [constructor] {A B : Type*} {f g : A →* B} (p : f = g) : f ~* g :=
|
||
phomotopy.mk (ap010 pmap.to_fun p) begin induction p, apply idp_con end
|
||
|
||
definition pconcat_eq [constructor] {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g = h)
|
||
: f ~* h :=
|
||
p ⬝* phomotopy_of_eq q
|
||
|
||
definition eq_pconcat [constructor] {A B : Type*} {f g h : A →* B} (p : f = g) (q : g ~* h)
|
||
: f ~* h :=
|
||
phomotopy_of_eq p ⬝* q
|
||
|
||
definition pwhisker_left [constructor] (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g :=
|
||
phomotopy.mk (λa, ap h (p a))
|
||
abstract begin
|
||
induction A, induction B, induction C,
|
||
induction f with f pf, induction g with g pg, induction h with h ph,
|
||
induction p with p p', esimp at *, induction ph, induction pg, induction p', reflexivity
|
||
end end
|
||
|
||
definition pwhisker_right [constructor] (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h :=
|
||
phomotopy.mk (λa, p (h a))
|
||
abstract begin
|
||
induction A, induction B, induction C,
|
||
induction f with f pf, induction g with g pg, induction h with h ph,
|
||
induction p with p p', esimp at *, induction ph, induction pg, induction p', esimp,
|
||
exact !idp_con⁻¹
|
||
end end
|
||
|
||
definition pconcat2 [constructor] {A B C : Type*} {h i : B →* C} {f g : A →* B}
|
||
(q : h ~* i) (p : f ~* g) : h ∘* f ~* i ∘* g :=
|
||
pwhisker_left _ p ⬝* pwhisker_right _ q
|
||
|
||
definition eq_of_phomotopy (p : f ~* g) : f = g :=
|
||
begin
|
||
fapply pmap_eq,
|
||
{ intro a, exact p a},
|
||
{ exact !to_homotopy_pt⁻¹}
|
||
end
|
||
|
||
definition pap {A B C D : Type*} (F : (A →* B) → (C →* D))
|
||
{f g : A →* B} (p : f ~* g) : F f ~* F g :=
|
||
phomotopy.mk (ap010 F (eq_of_phomotopy p)) begin cases eq_of_phomotopy p, apply idp_con end
|
||
|
||
-- TODO: give proof without using function extensionality (commented out part is a start)
|
||
definition ap1_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g)
|
||
: ap1 f ~* ap1 g :=
|
||
pap ap1 p
|
||
/- begin
|
||
induction p with p q, induction f with f pf, induction g with g pg, induction B with B b,
|
||
esimp at *, induction q, induction pg,
|
||
fapply phomotopy.mk,
|
||
{ intro l, esimp, refine _ ⬝ !idp_con⁻¹, refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con,
|
||
apply ap_con_eq_con_ap},
|
||
{ esimp, }
|
||
end -/
|
||
|
||
definition apn_compose (n : ℕ) (g : B →* C) (f : A →* B) : apn n (g ∘* f) ~* apn n g ∘* apn n f :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ refine ap1_phomotopy IH ⬝* _, apply ap1_compose}
|
||
end
|
||
|
||
theorem apn_con (n : ℕ) (f : A →* B) (p q : Ω[n+1] A)
|
||
: apn (n+1) f (p ⬝ q) = apn (n+1) f p ⬝ apn (n+1) f q :=
|
||
by rewrite [+apn_succ, ap1_con]
|
||
|
||
theorem apn_inv (n : ℕ) (f : A →* B) (p : Ω[n+1] A) : apn (n+1) f p⁻¹ = (apn (n+1) f p)⁻¹ :=
|
||
by rewrite [+apn_succ, ap1_inv]
|
||
|
||
infix ` ⬝*p `:75 := pconcat_eq
|
||
infix ` ⬝p* `:75 := eq_pconcat
|
||
|
||
end pointed
|