lean2/hott/types/pointed2.hlean
Floris van Doorn 5cacebcf86 feat(hott): replace assert by have and merge namespace equiv.ops into equiv
The coercion A ≃ B -> (A -> B) is now in namespace equiv. The notation ⁻¹ for symmetry of equivalences is not supported anymore. Use ⁻¹ᵉ
2016-03-03 10:13:21 -08:00

243 lines
7.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Ported from Coq HoTT
-/
import .equiv cubical.square
open eq is_equiv equiv pointed is_trunc
-- structure pequiv (A B : Type*) :=
-- (to_pmap : A →* B)
-- (is_equiv_to_pmap : is_equiv to_pmap)
structure pequiv (A B : Type*) extends equiv A B, pmap A B
namespace pointed
attribute pequiv._trans_of_to_pmap pequiv._trans_of_to_equiv pequiv.to_pmap pequiv.to_equiv
[unfold 3]
variables {A B C : Type*}
/- pointed equivalences -/
infix ` ≃* `:25 := pequiv
attribute pequiv.to_pmap [coercion]
attribute pequiv.to_is_equiv [instance]
definition pequiv_of_pmap [constructor] (f : A →* B) (H : is_equiv f) : A ≃* B :=
pequiv.mk f _ (respect_pt f)
definition pequiv_of_equiv [constructor] (f : A ≃ B) (H : f pt = pt) : A ≃* B :=
pequiv.mk f _ H
protected definition pequiv.MK [constructor] (f : A →* B) (g : B →* A)
(gf : Πa, g (f a) = a) (fg : Πb, f (g b) = b) : A ≃* B :=
pequiv.mk f (adjointify f g fg gf) (respect_pt f)
definition equiv_of_pequiv [constructor] (f : A ≃* B) : A ≃ B :=
equiv.mk f _
definition to_pinv [constructor] (f : A ≃* B) : B →* A :=
pmap.mk f⁻¹ ((ap f⁻¹ (respect_pt f))⁻¹ ⬝ !left_inv)
definition pua {A B : Type*} (f : A ≃* B) : A = B :=
pType_eq (equiv_of_pequiv f) !respect_pt
protected definition pequiv.refl [refl] [constructor] (A : Type*) : A ≃* A :=
pequiv_of_pmap !pid !is_equiv_id
protected definition pequiv.rfl [constructor] : A ≃* A :=
pequiv.refl A
protected definition pequiv.symm [symm] (f : A ≃* B) : B ≃* A :=
pequiv_of_pmap (to_pinv f) !is_equiv_inv
protected definition pequiv.trans [trans] (f : A ≃* B) (g : B ≃* C) : A ≃* C :=
pequiv_of_pmap (pcompose g f) !is_equiv_compose
postfix `⁻¹ᵉ*`:(max + 1) := pequiv.symm
infix ` ⬝e* `:75 := pequiv.trans
definition pequiv_rect' (f : A ≃* B) (P : A → B → Type)
(g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) :=
left_inv f a ▸ g (f a)
definition pequiv_of_eq [constructor] {A B : Type*} (p : A = B) : A ≃* B :=
pequiv_of_pmap (pcast p) !is_equiv_tr
definition peconcat_eq {A B C : Type*} (p : A ≃* B) (q : B = C) : A ≃* C :=
p ⬝e* pequiv_of_eq q
definition eq_peconcat {A B C : Type*} (p : A = B) (q : B ≃* C) : A ≃* C :=
pequiv_of_eq p ⬝e* q
definition eq_of_pequiv {A B : Type*} (p : A ≃* B) : A = B :=
pType_eq (equiv_of_pequiv p) !respect_pt
definition peap {A B : Type*} (F : Type* → Type*) (p : A ≃* B) : F A ≃* F B :=
pequiv_of_pmap (pcast (ap F (eq_of_pequiv p))) begin cases eq_of_pequiv p, apply is_equiv_id end
definition loop_space_pequiv [constructor] (p : A ≃* B) : Ω A ≃* Ω B :=
pequiv_of_pmap (ap1 p) (is_equiv_ap1 p)
definition iterated_loop_space_pequiv [constructor] (n : ) (p : A ≃* B) : Ω[n] A ≃* Ω[n] B :=
pequiv_of_pmap (apn n p) (is_equiv_apn n p)
definition pequiv_eq {p q : A ≃* B} (H : p = q :> (A →* B)) : p = q :=
begin
cases p with f Hf, cases q with g Hg, esimp at *,
exact apd011 pequiv_of_pmap H !is_prop.elim
end
definition loop_space_pequiv_rfl
: loop_space_pequiv (@pequiv.refl A) = @pequiv.refl (Ω A) :=
begin
apply pequiv_eq, fapply pmap_eq: esimp,
{ intro p, exact !idp_con ⬝ !ap_id},
{ reflexivity}
end
infix ` ⬝e*p `:75 := peconcat_eq
infix ` ⬝pe* `:75 := eq_peconcat
local attribute pequiv.symm [constructor]
definition pleft_inv (f : A ≃* B) : f⁻¹ᵉ* ∘* f ~* pid A :=
phomotopy.mk (left_inv f)
abstract begin
esimp, symmetry, apply con_inv_cancel_left
end end
definition pright_inv (f : A ≃* B) : f ∘* f⁻¹ᵉ* ~* pid B :=
phomotopy.mk (right_inv f)
abstract begin
induction f with f H p, esimp,
rewrite [ap_con, +ap_inv, -adj f, -ap_compose],
note q := natural_square (right_inv f) p,
rewrite [ap_id at q],
apply eq_bot_of_square,
exact transpose q
end end
definition pcancel_left (f : B ≃* C) {g h : A →* B} (p : f ∘* g ~* f ∘* h) : g ~* h :=
begin
refine _⁻¹* ⬝* pwhisker_left f⁻¹ᵉ* p ⬝* _:
refine !passoc⁻¹* ⬝* _:
refine pwhisker_right _ (pleft_inv f) ⬝* _:
apply pid_comp
end
definition pcancel_right (f : A ≃* B) {g h : B →* C} (p : g ∘* f ~* h ∘* f) : g ~* h :=
begin
refine _⁻¹* ⬝* pwhisker_right f⁻¹ᵉ* p ⬝* _:
refine !passoc ⬝* _:
refine pwhisker_left _ (pright_inv f) ⬝* _:
apply comp_pid
end
definition phomotopy_pinv_right_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
(p : g ∘* f ~* h) : g ~* h ∘* f⁻¹ᵉ* :=
begin
refine _ ⬝* pwhisker_right _ p, symmetry,
refine !passoc ⬝* _,
refine pwhisker_left _ (pright_inv f) ⬝* _,
apply comp_pid
end
definition phomotopy_of_pinv_right_phomotopy {f : B ≃* A} {g : B →* C} {h : A →* C}
(p : g ∘* f⁻¹ᵉ* ~* h) : g ~* h ∘* f :=
begin
refine _ ⬝* pwhisker_right _ p, symmetry,
refine !passoc ⬝* _,
refine pwhisker_left _ (pleft_inv f) ⬝* _,
apply comp_pid
end
definition pinv_right_phomotopy_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
(p : h ~* g ∘* f) : h ∘* f⁻¹ᵉ* ~* g :=
(phomotopy_pinv_right_of_phomotopy p⁻¹*)⁻¹*
definition phomotopy_of_phomotopy_pinv_right {f : B ≃* A} {g : B →* C} {h : A →* C}
(p : h ~* g ∘* f⁻¹ᵉ*) : h ∘* f ~* g :=
(phomotopy_of_pinv_right_phomotopy p⁻¹*)⁻¹*
definition phomotopy_pinv_left_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
(p : f ∘* g ~* h) : g ~* f⁻¹ᵉ* ∘* h :=
begin
refine _ ⬝* pwhisker_left _ p, symmetry,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ (pleft_inv f) ⬝* _,
apply pid_comp
end
definition phomotopy_of_pinv_left_phomotopy {f : C ≃* B} {g : A →* B} {h : A →* C}
(p : f⁻¹ᵉ* ∘* g ~* h) : g ~* f ∘* h :=
begin
refine _ ⬝* pwhisker_left _ p, symmetry,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ (pright_inv f) ⬝* _,
apply pid_comp
end
definition pinv_left_phomotopy_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
(p : h ~* f ∘* g) : f⁻¹ᵉ* ∘* h ~* g :=
(phomotopy_pinv_left_of_phomotopy p⁻¹*)⁻¹*
definition phomotopy_of_phomotopy_pinv_left {f : C ≃* B} {g : A →* B} {h : A →* C}
(p : h ~* f⁻¹ᵉ* ∘* g) : f ∘* h ~* g :=
(phomotopy_of_pinv_left_phomotopy p⁻¹*)⁻¹*
/- pointed equivalences between particular pointed types -/
definition loop_pequiv_loop [constructor] (f : A ≃* B) : Ω A ≃* Ω B :=
pequiv.MK (ap1 f) (ap1 f⁻¹ᵉ*)
abstract begin
intro p,
refine ((ap1_compose f⁻¹ᵉ* f) p)⁻¹ ⬝ _,
refine ap1_phomotopy (pleft_inv f) p ⬝ _,
exact ap1_id p
end end
abstract begin
intro p,
refine ((ap1_compose f f⁻¹ᵉ*) p)⁻¹ ⬝ _,
refine ap1_phomotopy (pright_inv f) p ⬝ _,
exact ap1_id p
end end
definition loopn_pequiv_loopn (n : ) (f : A ≃* B) : Ω[n] A ≃* Ω[n] B :=
begin
induction n with n IH,
{ exact f},
{ exact loop_pequiv_loop IH}
end
definition pmap_functor [constructor] {A A' B B' : Type*} (f : A' →* A) (g : B →* B') :
ppmap A B →* ppmap A' B' :=
pmap.mk (λh, g ∘* h ∘* f)
abstract begin
fapply pmap_eq,
{ esimp, intro a, exact respect_pt g},
{ rewrite [▸*, ap_constant], apply idp_con}
end end
/-
definition pmap_pequiv_pmap {A A' B B' : Type*} (f : A ≃* A') (g : B ≃* B') :
ppmap A B ≃* ppmap A' B' :=
pequiv.MK (pmap_functor f⁻¹ᵉ* g) (pmap_functor f g⁻¹ᵉ*)
abstract begin
intro a, esimp, apply pmap_eq,
{ esimp, },
{ }
end end
abstract begin
end end
-/
end pointed