lean2/library/data/int/div.lean
Leonardo de Moura 4ec0e1b07c feat(frontends/lean): improve calc mode
Now, it automatically supports transitivity of the form
    (R a b) -> (b = c) -> R a c
    (a = b) -> (R b c) -> R a c

closes #507
2015-04-04 08:58:35 -07:00

419 lines
18 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.int.div
Author: Jeremy Avigad
Definitions and properties of div, mod, gcd, lcm, coprime, following the SSReflect library.
Following SSReflect and the SMTlib standard, we define a mod b so that 0 ≤ a mod b < |b| when b ≠ 0.
-/
import data.int.order data.nat.div
open [coercions] [reduce-hints] nat
open [declarations] nat (succ)
open eq.ops
notation `` := nat
set_option pp.beta true
namespace int
/- definitions -/
definition divide (a b : ) : :=
sign b *
(match a with
| of_nat m := #nat m div (nat_abs b)
| -[ m +1] := -[ (#nat m div (nat_abs b)) +1]
end)
notation a div b := divide a b
definition modulo (a b : ) : := a - a div b * b
notation a mod b := modulo a b
notation a = b [mod c] := a mod c = b mod c
/- div -/
theorem of_nat_div_of_nat (m n : nat) : m div n = of_nat (#nat m div n) :=
nat.cases_on n
(by rewrite [↑divide, sign_zero, zero_mul, nat.div_zero])
(take n, by rewrite [↑divide, sign_of_succ, one_mul])
theorem neg_succ_of_nat_div (m : nat) {b : } (H : b > 0) :
-[m +1] div b = -(m div b + 1) :=
calc
-[m +1] div b = sign b * _ : rfl
... = -[(#nat m div (nat_abs b)) +1] : by rewrite [sign_of_pos H, one_mul]
... = -(m div b + 1) : by rewrite [↑divide, sign_of_pos H, one_mul]
theorem div_neg (a b : ) : a div -b = -(a div b) :=
by rewrite [↑divide, sign_neg, neg_mul_eq_neg_mul, nat_abs_neg]
theorem div_of_neg_of_pos {a b : } (Ha : a < 0) (Hb : b > 0) : a div b = -((-a - 1) div b + 1) :=
obtain m (H1 : a = -[m +1]), from exists_eq_neg_succ_of_nat Ha,
calc
a div b = -(m div b + 1) : by rewrite [H1, neg_succ_of_nat_div _ Hb]
... = -((-a -1) div b + 1) : by rewrite [H1, neg_succ_of_nat_eq', neg_sub, sub_neg_eq_add,
add.comm 1, add_sub_cancel]
theorem div_nonneg {a b : } (Ha : a ≥ 0) (Hb : b ≥ 0) : a div b ≥ 0 :=
obtain (m : ) (Hm : a = m), from exists_eq_of_nat Ha,
obtain (n : ) (Hn : b = n), from exists_eq_of_nat Hb,
calc
a div b = (#nat m div n) : by rewrite [Hm, Hn, of_nat_div_of_nat]
... ≥ 0 : begin change (0 ≤ #nat m div n), apply trivial end
theorem div_nonpos {a b : } (Ha : a ≥ 0) (Hb : b ≤ 0) : a div b ≤ 0 :=
calc
a div b = -(a div -b) : by rewrite [div_neg, neg_neg]
... ≤ 0 : neg_nonpos_of_nonneg (div_nonneg Ha (neg_nonneg_of_nonpos Hb))
theorem div_neg' {a b : } (Ha : a < 0) (Hb : b > 0) : a div b < 0 :=
have H1 : -a - 1 ≥ 0, from le_sub_one_of_lt (neg_pos_of_neg Ha),
have H2 : (-a - 1) div b + 1 > 0, from lt_add_one_of_le (div_nonneg H1 (le_of_lt Hb)),
calc
a div b = -((-a - 1) div b + 1) : div_of_neg_of_pos Ha Hb
... < 0 : neg_neg_of_pos H2
theorem zero_div (b : ) : 0 div b = 0 :=
calc
0 div b = sign b * (#nat 0 div (nat_abs b)) : rfl
... = sign b * 0 : nat.zero_div
... = 0 : mul_zero
theorem div_zero (a : ) : a div 0 = 0 :=
by rewrite [↑divide, sign_zero, zero_mul]
theorem div_one (a : ) :a div 1 = a :=
assert H : 1 > 0, from dec_trivial,
int.cases_on a
(take m, by rewrite [of_nat_div_of_nat, nat.div_one])
(take m, by rewrite [!neg_succ_of_nat_div H, of_nat_div_of_nat, nat.div_one])
theorem eq_div_mul_add_mod {a b : } : a = a div b * b + a mod b :=
!add.comm ▸ eq_add_of_sub_eq rfl
theorem div_eq_zero_of_lt {a b : } : 0 ≤ a → a < b → a div b = 0 :=
int.cases_on a
(take m, assume H,
int.cases_on b
(take n,
assume H : m < n,
calc
m div n = #nat m div n : of_nat_div_of_nat
... = 0 : nat.div_eq_zero_of_lt (lt_of_of_nat_lt_of_nat H))
(take n,
assume H : m < -[ n +1],
have H1 : ¬(m < -[ n +1]), from dec_trivial,
absurd H H1))
(take m,
assume H : 0 ≤ -[ m +1],
have H1 : ¬ (0 ≤ -[ m +1]), from dec_trivial,
absurd H H1)
theorem div_eq_zero_of_lt_abs {a b : } (H1 : 0 ≤ a) (H2 : a < abs b) : a div b = 0 :=
lt.by_cases
(assume H : b < 0,
assert H3 : a < -b, from abs_of_neg H ▸ H2,
calc
a div b = - (a div -b) : by rewrite [div_neg, neg_neg]
... = 0 : by rewrite [div_eq_zero_of_lt H1 H3, neg_zero])
(assume H : b = 0, H⁻¹ ▸ !div_zero)
(assume H : b > 0,
have H3 : a < b, from abs_of_pos H ▸ H2,
div_eq_zero_of_lt H1 H3)
/- mod -/
theorem of_nat_mod_of_nat (m n : nat) : m mod n = (#nat m mod n) :=
have H : m = (#nat m mod n) + m div n * n, from calc
m = of_nat (#nat m div n * n + m mod n) : nat.eq_div_mul_add_mod
... = (#nat m div n) * n + (#nat m mod n) : rfl
... = m div n * n + (#nat m mod n) : of_nat_div_of_nat
... = (#nat m mod n) + m div n * n : add.comm,
calc
m mod n = m - m div n * n : rfl
... = (#nat m mod n) : sub_eq_of_eq_add H
theorem neg_succ_of_nat_mod (m : ) {b : } (bpos : b > 0) :
-[m +1] mod b = b - 1 - m mod b :=
calc
-[m +1] mod b = -(m + 1) - -[m +1] div b * b : rfl
... = -(m + 1) - -(m div b + 1) * b : neg_succ_of_nat_div _ bpos
... = -m + -1 + (b + m div b * b) :
by rewrite [neg_add, -neg_mul_eq_neg_mul, sub_neg_eq_add, mul.right_distrib,
one_mul, (add.comm b)]
... = b + -1 + (-m + m div b * b) :
by rewrite [-*add.assoc, add.comm (-m), add.right_comm (-1), (add.comm b)]
... = b - 1 - m mod b :
by rewrite [↑modulo, *sub_eq_add_neg, neg_add, neg_neg]
theorem mod_neg (a b : ) : a mod -b = a mod b :=
calc
a mod -b = a - (a div -b) * -b : rfl
... = a - -(a div b) * -b : div_neg
... = a - a div b * b : neg_mul_neg
... = a mod b : rfl
theorem mod_abs (a b : ) : a mod (abs b) = a mod b :=
abs.by_cases rfl !mod_neg
theorem zero_mod (b : ) : 0 mod b = 0 :=
by rewrite [↑modulo, zero_div, zero_mul, sub_zero]
theorem mod_zero (a : ) : a mod 0 = a :=
by rewrite [↑modulo, mul_zero, sub_zero]
theorem mod_one (a : ) : a mod 1 = 0 :=
calc
a mod 1 = a - a div 1 * 1 : rfl
... = 0 : by rewrite [mul_one, div_one, sub_self]
private lemma of_nat_mod_abs (m : ) (b : ) : m mod (abs b) = (#nat m mod (nat_abs b)) :=
calc
m mod (abs b) = m mod (nat_abs b) : of_nat_nat_abs
... = (#nat m mod (nat_abs b)) : of_nat_mod_of_nat
private lemma of_nat_mod_abs_lt (m : ) {b : } (H : b ≠ 0) : m mod (abs b) < (abs b) :=
have H1 : abs b > 0, from abs_pos_of_ne_zero H,
have H2 : (#nat nat_abs b > 0), from lt_of_of_nat_lt_of_nat (!of_nat_nat_abs⁻¹ ▸ H1),
calc
m mod (abs b) = (#nat m mod (nat_abs b)) : of_nat_mod_abs m b
... < nat_abs b : of_nat_lt_of_nat (nat.mod_lt H2)
... = abs b : of_nat_nat_abs _
theorem mod_nonneg (a : ) {b : } (H : b ≠ 0) : a mod b ≥ 0 :=
have H1 : abs b > 0, from abs_pos_of_ne_zero H,
have H2 : a mod (abs b) ≥ 0, from
int.cases_on a
(take m, (of_nat_mod_abs m b)⁻¹ ▸ !of_nat_nonneg)
(take m,
have H3 : 1 + m mod (abs b) ≤ (abs b),
from (!add.comm ▸ add_one_le_of_lt (of_nat_mod_abs_lt m H)),
calc
-[ m +1] mod (abs b) = abs b - 1 - m mod (abs b) : neg_succ_of_nat_mod _ H1
... = abs b - (1 + m mod (abs b)) : by rewrite [*sub_eq_add_neg, neg_add, add.assoc]
... ≥ 0 : iff.mp' !sub_nonneg_iff_le H3),
!mod_abs ▸ H2
theorem mod_lt (a : ) {b : } (H : b ≠ 0) : a mod b < (abs b) :=
have H1 : abs b > 0, from abs_pos_of_ne_zero H,
have H2 : a mod (abs b) < abs b, from
int.cases_on a
(take m, of_nat_mod_abs_lt m H)
(take m,
have H3 : abs b ≠ 0, from assume H', H (eq_zero_of_abs_eq_zero H'),
have H4 : 1 + m mod (abs b) > 0, from add_pos_of_pos_of_nonneg dec_trivial (mod_nonneg _ H3),
calc
-[ m +1] mod (abs b) = abs b - 1 - m mod (abs b) : neg_succ_of_nat_mod _ H1
... = abs b - (1 + m mod (abs b)) : by rewrite [*sub_eq_add_neg, neg_add, add.assoc]
... < abs b : sub_lt_self _ H4),
!mod_abs ▸ H2
/- both div and mod -/
private theorem add_mul_div_self_aux1 {a : } {k : } (n : )
(H1 : a ≥ 0) (H2 : #nat k > 0) :
(a + n * k) div k = a div k + n :=
obtain m (Hm : a = of_nat m), from exists_eq_of_nat H1,
Hm⁻¹ ▸ (calc
(m + n * k) div k = (#nat (m + n * k)) div k : rfl
... = (#nat (m + n * k) div k) : of_nat_div_of_nat
... = (#nat m div k + n) : !nat.add_mul_div_self H2
... = (#nat m div k) + n : rfl
... = m div k + n : of_nat_div_of_nat)
private theorem add_mul_div_self_aux2 {a : } {k : } (n : )
(H1 : a < 0) (H2 : #nat k > 0) :
(a + n * k) div k = a div k + n :=
obtain m (Hm : a = -[m +1]), from exists_eq_neg_succ_of_nat H1,
or.elim (nat.lt_or_ge m (#nat n * k))
(assume m_lt_nk : #nat m < n * k,
have H3 : #nat (m + 1 ≤ n * k), from nat.succ_le_of_lt m_lt_nk,
have H4 : #nat m div k + 1 ≤ n,
from nat.succ_le_of_lt (nat.div_lt_of_lt_mul (!nat.mul.comm ▸ m_lt_nk)),
Hm⁻¹ ▸ (calc
(-[m +1] + n * k) div k = (n * k - (m + 1)) div k : by rewrite [add.comm, neg_succ_of_nat_eq]
... = ((#nat n * k) - (#nat m + 1)) div k : rfl
... = (#nat n * k - (m + 1)) div k : {of_nat_sub_of_nat H3}
... = #nat (n * k - (m + 1)) div k : of_nat_div_of_nat
... = #nat (k * n - (m + 1)) div k : nat.mul.comm
... = #nat n - m div k - 1 :
nat.mul_sub_div_of_lt (!nat.mul.comm ▸ m_lt_nk)
... = #nat n - (m div k + 1) : nat.sub_sub
... = n - (#nat m div k + 1) : of_nat_sub_of_nat H4
... = -(m div k + 1) + n :
by rewrite [add.comm, -sub_eq_add_neg, -of_nat_add_of_nat, of_nat_div_of_nat]
... = -[m +1] div k + n :
neg_succ_of_nat_div m (of_nat_lt_of_nat H2)))
(assume nk_le_m : #nat n * k ≤ m,
eq.symm (Hm⁻¹ ▸ (calc
-[m +1] div k + n = -(m div k + 1) + n :
neg_succ_of_nat_div m (of_nat_lt_of_nat H2)
... = -((#nat m div k) + 1) + n : of_nat_div_of_nat
... = -((#nat (m - n * k + n * k) div k) + 1) + n : nat.sub_add_cancel nk_le_m
... = -((#nat (m - n * k) div k + n) + 1) + n : nat.add_mul_div_self H2
... = -((#nat m - n * k) div k + 1) :
by rewrite [-of_nat_add_of_nat, *neg_add, add.right_comm, neg_add_cancel_right,
of_nat_div_of_nat]
... = -[(#nat m - n * k) +1] div k :
neg_succ_of_nat_div _ (of_nat_lt_of_nat H2)
... = -((#nat m - n * k) + 1) div k : rfl
... = -(m - (#nat n * k) + 1) div k : of_nat_sub_of_nat nk_le_m
... = (-(m + 1) + n * k) div k :
by rewrite [sub_eq_add_neg, -*add.assoc, *neg_add, neg_neg, add.right_comm]
... = (-[m +1] + n * k) div k : rfl)))
private theorem add_mul_div_self_aux3 (a : ) {b c : } (H1 : b ≥ 0) (H2 : c > 0) :
(a + b * c) div c = a div c + b :=
obtain n (Hn : b = of_nat n), from exists_eq_of_nat H1,
obtain k (Hk : c = of_nat k), from exists_eq_of_nat (le_of_lt H2),
have knz : k ≠ 0, from assume kz, !lt.irrefl (kz ▸ Hk ▸ H2),
have kgt0 : (#nat k > 0), from nat.pos_of_ne_zero knz,
have H3 : (a + n * k) div k = a div k + n, from
or.elim (lt_or_ge a 0)
(assume Ha : a < 0, add_mul_div_self_aux2 _ Ha kgt0)
(assume Ha : a ≥ 0, add_mul_div_self_aux1 _ Ha kgt0),
Hn⁻¹ ▸ Hk⁻¹ ▸ H3
private theorem add_mul_div_self_aux4 (a b : ) {c : } (H : c > 0) :
(a + b * c) div c = a div c + b :=
or.elim (le.total 0 b)
(assume H1 : 0 ≤ b, add_mul_div_self_aux3 _ H1 H)
(assume H1 : 0 ≥ b,
eq.symm (calc
a div c + b = (a + b * c + -b * c) div c + b :
by rewrite [-neg_mul_eq_neg_mul, add_neg_cancel_right]
... = (a + b * c) div c + - b + b :
add_mul_div_self_aux3 _ (neg_nonneg_of_nonpos H1) H
... = (a + b * c) div c : neg_add_cancel_right))
theorem add_mul_div_self (a b : ) {c : } (H : c ≠ 0) : (a + b * c) div c = a div c + b :=
lt.by_cases
(assume H1 : 0 < c, !add_mul_div_self_aux4 H1)
(assume H1 : 0 = c, absurd H1⁻¹ H)
(assume H1 : 0 > c,
have H2 : -c > 0, from neg_pos_of_neg H1,
calc
(a + b * c) div c = - ((a + -b * -c) div -c) : by rewrite [div_neg, neg_mul_neg, neg_neg]
... = -(a div -c + -b) : !add_mul_div_self_aux4 H2
... = a div c + b : by rewrite [div_neg, neg_add, *neg_neg])
theorem add_mul_div_self_left (a : ) {b : } (c : ) (H : b ≠ 0) :
(a + b * c) div b = a div b + c :=
!mul.comm ▸ !add_mul_div_self H
theorem mul_div_cancel (a : ) {b : } (H : b ≠ 0) : a * b div b = a :=
calc
a * b div b = (0 + a * b) div b : zero_add
... = 0 div b + a : !add_mul_div_self H
... = a : by rewrite [zero_div, zero_add]
theorem mul_div_cancel_left {a : } (b : ) (H : a ≠ 0) : a * b div a = b :=
!mul.comm ▸ mul_div_cancel b H
theorem div_self {a : } (H : a ≠ 0) : a div a = 1 :=
!mul_one ▸ !mul_div_cancel_left H
theorem mod_self {a : } : a mod a = 0 :=
decidable.by_cases
(assume H : a = 0, H⁻¹ ▸ !mod_zero)
(assume H : a ≠ 0,
calc
a mod a = a - a div a * a : rfl
... = 0 : by rewrite [!div_self H, one_mul, sub_self])
theorem mod_lt_of_pos (a : ) {b : } (H : b > 0) : a mod b < b :=
!abs_of_pos H ▸ !mod_lt (ne.symm (ne_of_lt H))
theorem mul_div_mul_of_pos_aux {a : } (b : ) {c : }
(H1 : a > 0) (H2 : c > 0) : a * b div (a * c) = b div c :=
have H3 : a * c ≠ 0, from ne.symm (ne_of_lt (mul_pos H1 H2)),
have H4 : a * (b mod c) < a * c, from mul_lt_mul_of_pos_left (!mod_lt_of_pos H2) H1,
have H5 : a * (b mod c) ≥ 0, from mul_nonneg (le_of_lt H1) (!mod_nonneg (ne.symm (ne_of_lt H2))),
calc
a * b div (a * c) = a * (b div c * c + b mod c) div (a * c) : eq_div_mul_add_mod
... = (a * (b mod c) + a * c * (b div c)) div (a * c) :
by rewrite [!add.comm, mul.left_distrib, mul.comm _ c, -!mul.assoc]
... = a * (b mod c) div (a * c) + b div c : !add_mul_div_self_left H3
... = 0 + b div c : {!div_eq_zero_of_lt H5 H4}
... = b div c : zero_add
theorem mul_div_mul_of_pos {a : } (b c : ) (H : a > 0) : a * b div (a * c) = b div c :=
lt.by_cases
(assume H1 : c < 0,
have H2 : -c > 0, from neg_pos_of_neg H1,
calc
a * b div (a * c) = - (a * b div (a * -c)) :
by rewrite [!neg_mul_eq_mul_neg⁻¹, div_neg, neg_neg]
... = - (b div -c) : mul_div_mul_of_pos_aux _ H H2
... = b div c : by rewrite [div_neg, neg_neg])
(assume H1 : c = 0,
calc
a * b div (a * c) = 0 : by rewrite [H1, mul_zero, div_zero]
... = b div c : by rewrite [H1, div_zero])
(assume H1 : c > 0,
mul_div_mul_of_pos_aux _ H H1)
theorem mul_div_mul_of_pos_left (a : ) {b : } (c : ) (H : b > 0) : a * b div (c * b) = a div c :=
!mul.comm ▸ !mul.comm ▸ !mul_div_mul_of_pos H
theorem div_mul_le (a : ) {b : } (H : b ≠ 0) : a div b * b ≤ a :=
calc
a = a div b * b + a mod b : eq_div_mul_add_mod
... ≥ a div b * b : le_add_of_nonneg_right (!mod_nonneg H)
theorem lt_div_add_one_mul_self (a : ) {b : } (H : b > 0) : a < (a div b + 1) * b :=
have H : a - a div b * b < b, from !mod_lt_of_pos H,
calc
a < a div b * b + b : iff.mp' !lt_add_iff_sub_lt_left H
... = (a div b + 1) * b : by rewrite [mul.right_distrib, one_mul]
theorem div_le_of_nonneg_of_nonneg {a b : } (Ha : a ≥ 0) (Hb : b ≥ 0) : a div b ≤ a :=
obtain (m : ) (Hm : a = m), from exists_eq_of_nat Ha,
obtain (n : ) (Hn : b = n), from exists_eq_of_nat Hb,
calc
a div b = #nat m div n : by rewrite [Hm, Hn, of_nat_div_of_nat]
... ≤ m : of_nat_le_of_nat !nat.div_le
... = a : Hm
theorem abs_div_le_abs (a b : ) : abs (a div b) ≤ abs a :=
have H : ∀a b, b > 0 → abs (a div b) ≤ abs a, from
take a b,
assume H1 : b > 0,
or.elim (le_or_gt 0 a)
(assume H2 : 0 ≤ a,
have H3 : 0 ≤ b, from le_of_lt H1,
calc
abs (a div b) = a div b : abs_of_nonneg (div_nonneg H2 H3)
... ≤ a : div_le_of_nonneg_of_nonneg H2 H3
... = abs a : abs_of_nonneg H2)
(assume H2 : a < 0,
have H3 : -a - 1 ≥ 0, from le_sub_one_of_lt (neg_pos_of_neg H2),
have H4 : (-a - 1) div b + 1 ≥ 0, from add_nonneg (div_nonneg H3 (le_of_lt H1)) (of_nat_le_of_nat !nat.zero_le),
have H5 : (-a - 1) div b ≤ -a - 1, from div_le_of_nonneg_of_nonneg H3 (le_of_lt H1),
calc
abs (a div b) = abs ((-a - 1) div b + 1) : by rewrite [div_of_neg_of_pos H2 H1, abs_neg]
... = (-a - 1) div b + 1 : abs_of_nonneg H4
... ≤ -a - 1 + 1 : add_le_add_right H5 _
... = abs a : by rewrite [sub_add_cancel, abs_of_neg H2]),
lt.by_cases
(assume H1 : b < 0,
calc
abs (a div b) = abs (a div -b) : by rewrite [div_neg, abs_neg]
... ≤ abs a : H _ _ (neg_pos_of_neg H1))
(assume H1 : b = 0,
calc
abs (a div b) = 0 : by rewrite [H1, div_zero, abs_zero]
... ≤ abs a : abs_nonneg)
(assume H1 : b > 0, H _ _ H1)
/- ltz_divLR -/
end int