504 lines
19 KiB
Text
504 lines
19 KiB
Text
/-
|
||
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Temporary file; move in Lean3.
|
||
-/
|
||
import data.set algebra.order_bigops
|
||
import data.finset data.list.sort
|
||
|
||
-- move this to init.function
|
||
|
||
section
|
||
open function
|
||
postfix `^~` :std.prec.max_plus := swap
|
||
end
|
||
|
||
-- move to algebra
|
||
|
||
theorem eq_of_inv_mul_eq_one {A : Type} {a b : A} [group A] (H : b⁻¹ * a = 1) : a = b :=
|
||
have a⁻¹ * 1 = a⁻¹, by inst_simp,
|
||
by inst_simp
|
||
|
||
-- move to init.quotient
|
||
|
||
namespace quot
|
||
open classical
|
||
|
||
variables {A : Type} [s : setoid A]
|
||
|
||
protected theorem exists_eq_mk (x : quot s) : ∃ a : A, x = ⟦a⟧ :=
|
||
quot.induction_on x (take a, exists.intro _ rfl)
|
||
|
||
protected noncomputable definition repr (x : quot s) : A := some (quot.exists_eq_mk x)
|
||
|
||
protected theorem mk_repr_eq (x : quot s) : ⟦ quot.repr x ⟧ = x :=
|
||
eq.symm (some_spec (quot.exists_eq_mk x))
|
||
|
||
open setoid
|
||
include s
|
||
protected theorem repr_mk_equiv (a : A) : quot.repr ⟦a⟧ ≈ a :=
|
||
quot.exact (by rewrite quot.mk_repr_eq)
|
||
|
||
end quot
|
||
|
||
-- move to data.set.basic
|
||
|
||
-- move to algebra.ring
|
||
|
||
theorem mul_two {A : Type} [semiring A] (a : A) : a * 2 = a + a :=
|
||
by rewrite [-one_add_one_eq_two, left_distrib, +mul_one]
|
||
|
||
theorem two_mul {A : Type} [semiring A] (a : A) : 2 * a = a + a :=
|
||
by rewrite [-one_add_one_eq_two, right_distrib, +one_mul]
|
||
|
||
-- move to data.set
|
||
|
||
namespace set
|
||
open function
|
||
|
||
lemma inter_eq_self_of_subset {X : Type} {s t : set X} (Hst : s ⊆ t) : s ∩ t = s :=
|
||
ext (take x, iff.intro
|
||
(assume H, !inter_subset_left H)
|
||
(assume H, and.intro H (Hst H)))
|
||
|
||
lemma inter_eq_self_of_subset_right {X : Type} {s t : set X} (Hst : t ⊆ s) : s ∩ t = t :=
|
||
by rewrite [inter_comm]; apply inter_eq_self_of_subset Hst
|
||
|
||
proposition diff_self_inter {X : Type} (s t : set X) : s \ (s ∩ t) = s \ t :=
|
||
by rewrite [*diff_eq, compl_inter, inter_distrib_left, inter_compl_self, empty_union]
|
||
|
||
proposition diff_eq_diff {X : Type} {s t u : set X} (H : s ∩ u = s ∩ t) :
|
||
s \ u = s \ t :=
|
||
by rewrite [-diff_self_inter, H, diff_self_inter]
|
||
|
||
-- classical
|
||
proposition inter_eq_inter_of_diff_eq_diff {X : Type} {s t u : set X} (H : s \ u = s \ t) :
|
||
s ∩ u = s ∩ t :=
|
||
by rewrite [-compl_compl u, -compl_compl t]; apply diff_eq_diff H
|
||
|
||
proposition compl_inter_eq_compl_inter {X : Type} {s t u : set X}
|
||
(H : u ∩ s = t ∩ s) :
|
||
-u ∩ s = -t ∩ s :=
|
||
by rewrite [*inter_comm _ s]; apply diff_eq_diff; rewrite [*inter_comm s, H]
|
||
|
||
proposition inter_eq_inter_of_compl_inter_eq_compl_inter {X : Type} {s t u : set X}
|
||
(H : -u ∩ s = -t ∩ s) :
|
||
u ∩ s = t ∩ s :=
|
||
begin
|
||
rewrite [*inter_comm _ s], apply inter_eq_inter_of_diff_eq_diff,
|
||
rewrite [*diff_eq, *inter_comm s, H]
|
||
end
|
||
|
||
proposition singleton_subset_of_mem {X : Type} {x : X} {s : set X} (xs : x ∈ s) : '{x} ⊆ s :=
|
||
take y, assume yx,
|
||
have y = x, from eq_of_mem_singleton yx,
|
||
by rewrite this; exact xs
|
||
|
||
proposition mem_of_singleton_subset {X : Type} {x : X} {s : set X} (xs : '{x} ⊆ s) : x ∈ s :=
|
||
xs !mem_singleton
|
||
|
||
proposition singleton_subset_iff {X : Type} (x : X) (s : set X) : '{x} ⊆ s ↔ x ∈ s :=
|
||
iff.intro mem_of_singleton_subset singleton_subset_of_mem
|
||
|
||
theorem singleton_subset {X : Type} {a : X} {s : set X} (H : a ∈ s) : '{a} ⊆ s :=
|
||
take b, suppose b ∈ '{a},
|
||
have b = a, from eq_of_mem_singleton this,
|
||
show b ∈ s, by rewrite this; assumption
|
||
|
||
lemma inter_eq_inter_left {X : Type} {s t u : set X} (H₁ : s ∩ t ⊆ u) (H₂ : s ∩ u ⊆ t) :
|
||
s ∩ t = s ∩ u :=
|
||
eq_of_subset_of_subset
|
||
(subset_inter (inter_subset_left _ _) H₁)
|
||
(subset_inter (inter_subset_left _ _) H₂)
|
||
|
||
lemma inter_eq_inter_right {X : Type} {s t u : set X} (H₁ : s ∩ t ⊆ u) (H₂ : u ∩ t ⊆ s) :
|
||
s ∩ t = u ∩ t :=
|
||
eq_of_subset_of_subset
|
||
(subset_inter H₁ (inter_subset_right _ _))
|
||
(subset_inter H₂ (inter_subset_right _ _))
|
||
|
||
proposition sUnion_subset {X : Type} {S : set (set X)} {t : set X} (H : ∀₀ u ∈ S, u ⊆ t) :
|
||
⋃₀ S ⊆ t :=
|
||
take x, assume Hx,
|
||
obtain u [uS xu], from Hx,
|
||
H uS xu
|
||
|
||
proposition subset_of_sUnion_subset {X : Type} {S : set (set X)} {t : set X}
|
||
(H : ⋃₀ S ⊆ t) {u : set X} (Hu : u ∈ S) : u ⊆ t :=
|
||
λ x xu, H (exists.intro u (and.intro Hu xu))
|
||
|
||
proposition preimage_Union {I X Y : Type} (f : X → Y) (u : I → set Y) :
|
||
f '- (⋃ i, u i) = ⋃ i, (f '- (u i)) :=
|
||
ext (take x, !iff.refl)
|
||
|
||
-- TODO: rename "injective" to "inj"
|
||
-- TODO: turn around equality in definition of image
|
||
-- TODO: use ∀₀ in definition of injective (and define notation for ∀₀ x y ∈ s, ...)
|
||
|
||
attribute [trans] subset.trans -- really? this was never declared? And all the variants...
|
||
|
||
proposition mem_set_of_iff {X : Type} (P : X → Prop) (a : X) : a ∈ { x : X | P x } ↔ P a :=
|
||
iff.refl _
|
||
|
||
proposition mem_set_of {X : Type} {P : X → Prop} {a : X} (Pa : P a) : a ∈ { x : X | P x } := Pa
|
||
|
||
proposition of_mem_set_of {X : Type} {P : X → Prop} {a : X} (H : a ∈ { x : X | P x }) : P a := H
|
||
|
||
proposition forallb_of_forall {X : Type} {P : X → Prop} (s : set X) (H : ∀ x, P x) :
|
||
∀₀ x ∈ s, P x :=
|
||
λ x xs, H x
|
||
|
||
proposition forall_of_forallb_univ {X : Type} {P : X → Prop} (H : ∀₀ x ∈ univ, P x) : ∀ x, P x :=
|
||
λ x, H trivial
|
||
|
||
proposition forallb_univ_iff_forall {X : Type} (P : X → Prop) : (∀₀ x ∈ univ, P x) ↔ ∀ x, P x :=
|
||
iff.intro forall_of_forallb_univ !forallb_of_forall
|
||
|
||
proposition forallb_of_subset {X : Type} {s t : set X} {P : X → Prop}
|
||
(ssubt : s ⊆ t) (Ht : ∀₀ x ∈ t, P x) : ∀₀ x ∈ s, P x :=
|
||
λ x xs, Ht (ssubt xs)
|
||
|
||
proposition forallb_of_forall₂ {X Y : Type} {P : X → Y → Prop} (s : set X) (t : set Y)
|
||
(H : ∀ x y, P x y) : ∀₀ x ∈ s, ∀₀ y ∈ t, P x y :=
|
||
λ x xs y yt, H x y
|
||
|
||
proposition forall_of_forallb_univ₂ {X Y : Type} {P : X → Y → Prop}
|
||
(H : ∀₀ x ∈ univ, ∀₀ y ∈ univ, P x y) : ∀ x y, P x y :=
|
||
λ x y, H trivial trivial
|
||
|
||
proposition forallb_univ_iff_forall₂ {X Y : Type} (P : X → Y → Prop) :
|
||
(∀₀ x ∈ univ, ∀₀ y ∈ univ, P x y) ↔ ∀ x y, P x y :=
|
||
iff.intro forall_of_forallb_univ₂ !forallb_of_forall₂
|
||
|
||
proposition forallb_of_subset₂ {X Y : Type} {s₁ t₁ : set X} {s₂ t₂ : set Y} {P : X → Y → Prop}
|
||
(ssubt₁ : s₁ ⊆ t₁) (ssubt₂ : s₂ ⊆ t₂) (Ht : ∀₀ x ∈ t₁, ∀₀ y ∈ t₂, P x y) :
|
||
∀₀ x ∈ s₁, ∀₀ y ∈ s₂, P x y :=
|
||
λ x xs y ys, Ht (ssubt₁ xs) (ssubt₂ ys)
|
||
|
||
theorem maps_to_univ {X Y : Type} (f : X → Y) (a : set X) : maps_to f a univ :=
|
||
take x, assume H, trivial
|
||
|
||
theorem surj_on_image {X Y : Type} (f : X → Y) (a : set X) : surj_on f a (f ' a) :=
|
||
λ y Hy, Hy
|
||
|
||
theorem image_eq_univ_of_surjective {X Y : Type} {f : X → Y} (H : surjective f) :
|
||
f ' univ = univ :=
|
||
ext (take y, iff.intro (λ H', trivial)
|
||
(λ H', obtain x xeq, from H y,
|
||
show y ∈ f ' univ, from mem_image trivial xeq))
|
||
|
||
proposition image_inter_subset {X Y : Type} (f : X → Y) (s t : set X) :
|
||
f ' (s ∩ t) ⊆ f ' s ∩ f ' t :=
|
||
take y, assume ymem,
|
||
obtain x [[xs xt] (xeq : f x = y)], from ymem,
|
||
show y ∈ f ' s ∩ f ' t,
|
||
begin
|
||
rewrite -xeq,
|
||
exact (and.intro (mem_image_of_mem f xs) (mem_image_of_mem f xt))
|
||
end
|
||
|
||
--proposition image_eq_of_maps_to_of_surj_on {X Y : Type} {f : X → Y} {s : set X} {t : set Y}
|
||
-- (H : maps_to f s t) (H' : surj_on f s t) :
|
||
-- f ' s = t :=
|
||
--eq_of_subset_of_subset (image_subset_of_maps_to H) H'
|
||
|
||
proposition surj_on_of_image_eq {X Y : Type} {f : X → Y} {s : set X} {t : set Y}
|
||
(H : f ' s = t) :
|
||
surj_on f s t :=
|
||
by rewrite [↑surj_on, H]; apply subset.refl
|
||
|
||
proposition surjective_induction {X Y : Type} {P : Y → Prop} {f : X → Y}
|
||
(surjf : surjective f) (H : ∀ x, P (f x)) :
|
||
∀ y, P y :=
|
||
take y,
|
||
obtain x (yeq : f x = y), from surjf y,
|
||
show P y, by rewrite -yeq; apply H x
|
||
|
||
proposition surjective_induction₂ {X Y : Type} {P : Y → Y → Prop} {f : X → Y}
|
||
(surjf : surjective f) (H : ∀ x₁ x₂, P (f x₁) (f x₂)) :
|
||
∀ y₁ y₂, P y₁ y₂ :=
|
||
take y₁ y₂,
|
||
obtain x₁ (y₁eq : f x₁ = y₁), from surjf y₁,
|
||
obtain x₂ (y₂eq : f x₂ = y₂), from surjf y₂,
|
||
show P y₁ y₂, by rewrite [-y₁eq, -y₂eq]; apply H x₁ x₂
|
||
|
||
proposition surj_on_univ_induction {X Y : Type} {P : Y → Prop} {f : X → Y} {s : set X}
|
||
(surjfs : surj_on f s univ) (H : ∀₀ x ∈ s, P (f x)) :
|
||
∀ y, P y :=
|
||
take y,
|
||
obtain x [xs (yeq : f x = y)], from surjfs trivial,
|
||
show P y, by rewrite -yeq; apply H xs
|
||
|
||
proposition surj_on_univ_induction₂ {X Y : Type} {P : Y → Y → Prop} {f : X → Y} {s : set X}
|
||
(surjfs : surj_on f s univ) (H : ∀₀ x₁ ∈ s, ∀₀ x₂ ∈ s, P (f x₁) (f x₂)) :
|
||
∀ y₁ y₂, P y₁ y₂ :=
|
||
take y₁ y₂,
|
||
obtain x₁ [x₁s (y₁eq : f x₁ = y₁)], from surjfs trivial,
|
||
obtain x₂ [x₂s (y₂eq : f x₂ = y₂)], from surjfs trivial,
|
||
show P y₁ y₂, by rewrite [-y₁eq, -y₂eq]; apply H x₁s x₂s
|
||
|
||
proposition surj_on_univ_of_surjective {X Y : Type} {f : X → Y} (s : set Y) (H : surjective f) :
|
||
surj_on f univ s :=
|
||
take y, assume ys,
|
||
obtain x yeq, from H y,
|
||
mem_image !mem_univ yeq
|
||
|
||
proposition mem_of_mem_image_of_injective {X Y : Type} {f : X → Y} {s : set X} {a : X}
|
||
(injf : injective f) (H : f a ∈ f ' s) :
|
||
a ∈ s :=
|
||
obtain b [bs faeq], from H,
|
||
have b = a, from injf faeq,
|
||
by rewrite -this; apply bs
|
||
|
||
proposition mem_of_mem_image_of_inj_on {X Y : Type} {f : X → Y} {s t : set X} {a : X} (Ha : a ∈ t)
|
||
(Hs : s ⊆ t) (injft : inj_on f t) (H : f a ∈ f ' s) :
|
||
a ∈ s :=
|
||
obtain b [bs faeq], from H,
|
||
have b = a, from injft (Hs bs) Ha faeq,
|
||
by rewrite -this; apply bs
|
||
|
||
proposition eq_singleton_of_forall_eq {A : Type} {s : set A} {x : A} (xs : x ∈ s) (H : ∀₀ y ∈ s, y = x) :
|
||
s = '{x} :=
|
||
ext (take y, iff.intro
|
||
(assume ys, mem_singleton_of_eq (H ys))
|
||
(assume yx, by rewrite (eq_of_mem_singleton yx); assumption))
|
||
|
||
proposition insert_subset {A : Type} {s t : set A} {a : A} (amem : a ∈ t) (ssubt : s ⊆ t) : insert a s ⊆ t :=
|
||
take x, assume xias,
|
||
or.elim (eq_or_mem_of_mem_insert xias)
|
||
(by simp)
|
||
(take H, ssubt H)
|
||
|
||
-- move to data.set.finite
|
||
|
||
lemma finite_sUnion {A : Type} {S : set (set A)} [H : finite S] :
|
||
(∀s, s ∈ S → finite s) → finite ⋃₀S :=
|
||
induction_on_finite S
|
||
(by intro H; rewrite sUnion_empty; apply finite_empty)
|
||
(take a s, assume fins anins ih h,
|
||
begin
|
||
rewrite sUnion_insert,
|
||
apply finite_union,
|
||
{apply h _ (mem_insert a s)},
|
||
apply ih (forall_of_forall_insert h)
|
||
end)
|
||
|
||
lemma subset_powerset_sUnion {A : Type} (S : set (set A)) : S ⊆ 𝒫 (⋃₀ S) :=
|
||
take u, suppose u ∈ S, show u ⊆ ⋃₀ S, from subset_sUnion_of_mem this
|
||
|
||
lemma finite_of_finite_sUnion {A : Type} (S : set (set A)) (H : finite ⋃₀S) : finite S :=
|
||
have finite (𝒫 (⋃₀ S)), from finite_powerset _,
|
||
show finite S, from finite_subset (subset_powerset_sUnion S)
|
||
|
||
section nat
|
||
open nat
|
||
|
||
proposition ne_empty_of_card_pos {A : Type} {s : set A} (H : card s > 0) : s ≠ ∅ :=
|
||
take H', begin rewrite [H' at H, card_empty at H], exact lt.irrefl 0 H end
|
||
|
||
lemma eq_of_card_eq_one {A : Type} {S : set A} (H : card S = 1) {x y : A} (Hx : x ∈ S) (Hy : y ∈ S) :
|
||
x = y :=
|
||
have finite S,
|
||
from classical.by_contradiction
|
||
(assume nfinS, begin rewrite (card_of_not_finite nfinS) at H, contradiction end),
|
||
classical.by_contradiction
|
||
(assume H0 : x ≠ y,
|
||
have H1 : '{x, y} ⊆ S, from insert_subset Hx (insert_subset Hy (empty_subset _)),
|
||
have x ∉ '{y}, from assume H, H0 (eq_of_mem_singleton H),
|
||
have 2 ≤ 1, from calc
|
||
2 = card '{x, y} : by rewrite [card_insert_of_not_mem this,
|
||
card_insert_of_not_mem (not_mem_empty _), card_empty]
|
||
... ≤ card S : card_le_card_of_subset H1
|
||
... = 1 : H,
|
||
show false, from dec_trivial this)
|
||
|
||
proposition eq_singleton_of_card_eq_one {A : Type} {s : set A} {x : A} (H : card s = 1) (xs : x ∈ s) :
|
||
s = '{x} :=
|
||
eq_singleton_of_forall_eq xs (take y, assume ys, eq.symm (eq_of_card_eq_one H xs ys))
|
||
|
||
proposition exists_eq_singleton_of_card_eq_one {A : Type} {s : set A} (H : card s = 1) : ∃ x, s = '{x} :=
|
||
have s ≠ ∅, from ne_empty_of_card_pos (by rewrite H; apply dec_trivial),
|
||
obtain (x : A) (xs : x ∈ s), from exists_mem_of_ne_empty this,
|
||
exists.intro x (eq_singleton_of_card_eq_one H xs)
|
||
|
||
end nat
|
||
|
||
-- move to data.set.classical_inverse (and rename file to "inverse")
|
||
|
||
theorem inv_fun_spec {X Y : Type} {f : X → Y} {a : set X} {dflt : X} {x : X} (xa : x ∈ a) :
|
||
f (inv_fun f a dflt (f x)) = f x :=
|
||
and.right (inv_fun_pos (exists.intro x (and.intro xa rfl)))
|
||
|
||
theorem inv_fun_spec' {X Y : Type} {f : X → Y} {a : set X} {dflt : X} {x : X} (xa : x ∈ a) :
|
||
inv_fun f a dflt (f x) ∈ a :=
|
||
and.left (inv_fun_pos (exists.intro x (and.intro xa rfl)))
|
||
|
||
-- TODO: move to data.set.filter
|
||
|
||
namespace filter
|
||
protected theorem le_iff {X : Type} (F₁ F₂ : filter X) : F₁ ≤ F₂ ↔ F₂ ⊆ F₁ := iff.refl _
|
||
|
||
-- TODO: change names of fields in filter
|
||
-- TODO: reorder hypotheses in eventually_of_le, and change "le" to "ge"
|
||
-- TODO: fix eventually_inf: implicit argument, and use implication
|
||
-- TODO: set: add spaces around ∀₀ x ∈ s and ∃₀ x ∈ s
|
||
|
||
theorem eventually_inf_left {X : Type} {P : X → Prop} {F₁ : filter X} (F₂ : filter X)
|
||
(H : eventually P F₁) : eventually P (inf F₁ F₂) :=
|
||
eventually_of_le H !inf_le_left
|
||
|
||
theorem eventually_inf_right {X : Type} {P : X → Prop} (F₁ : filter X) {F₂ : filter X}
|
||
(H : eventually P F₂) : eventually P (inf F₁ F₂) :=
|
||
eventually_of_le H !inf_le_right
|
||
|
||
theorem eventually_Inf {X : Type} {P : X → Prop} {S : set (filter X)} {F : filter X} (FS : F ∈ S)
|
||
(H : eventually P F) : eventually P (Inf S) :=
|
||
eventually_of_le H (Inf_le FS)
|
||
|
||
-- TODO: replace definition of Inf with this
|
||
|
||
definition Inf' {X : Type} (S : set (filter X)) : filter X :=
|
||
⦃ filter,
|
||
sets := { s | ∃ T : set (set X), finite T ∧ T ⊆ (⋃ F ∈ S, sets F) ∧ ⋂₀ T ⊆ s},
|
||
univ_mem_sets := abstract
|
||
have H : (⋂₀ ∅) ⊆ @univ X, by rewrite sInter_empty; apply subset.refl,
|
||
exists.intro ∅ (and.intro !finite_empty (and.intro (empty_subset _) H))
|
||
end,
|
||
inter_closed := abstract
|
||
take s t, assume Hs Ht,
|
||
obtain Ts finTs Tssub ITs, from Hs,
|
||
obtain Tt finTt Ttsub ITt, from Ht,
|
||
have H1 : finite (Ts ∪ Tt), proof finite_union Ts Tt qed,
|
||
have H2 : Ts ∪ Tt ⊆ (⋃ F ∈ S, sets F), from union_subset Tssub Ttsub,
|
||
have H3 : ⋂₀ (Ts ∪ Tt) ⊆ s ∩ t,
|
||
begin
|
||
rewrite sInter_union, apply subset_inter,
|
||
{exact subset.trans (inter_subset_left _ _) ITs},
|
||
exact subset.trans (inter_subset_right _ _) ITt
|
||
end,
|
||
exists.intro _ (and.intro H1 (and.intro H2 H3))
|
||
end,
|
||
is_mono := abstract
|
||
take s t ssubt Hs,
|
||
obtain T finT Tsub IT, from Hs,
|
||
exists.intro T (and.intro finT (and.intro Tsub (subset.trans IT ssubt)))
|
||
end
|
||
⦄
|
||
|
||
theorem sets_Inf' {A : Type} (S : set (filter A)) :
|
||
sets (Inf' S) = { s | ∃ T : set (set A), finite T ∧ T ⊆ (⋃ F ∈ S, sets F) ∧ ⋂₀ T ⊆ s} :=
|
||
rfl
|
||
|
||
theorem sInter_mem_of_finite {A : Type} {F : filter A} {T : set (set A)} (finT : finite T)
|
||
(Tsub : T ⊆ sets F) : ⋂₀ T ∈ sets F :=
|
||
begin
|
||
induction finT with a T finT aninT ih,
|
||
{rewrite sInter_empty, apply filter.univ_mem_sets},
|
||
rewrite sInter_insert, apply filter.inter_closed,
|
||
show a ∈ sets F, from Tsub (mem_insert a T),
|
||
show ⋂₀ T ∈ sets F, from ih (subset.trans (subset_insert _ _) Tsub)
|
||
end
|
||
|
||
theorem le_Inf' {A : Type} {F : filter A} {S : set (filter A)} (H : ∀₀ G ∈ S, F ≤ G) :
|
||
F ≤ Inf' S :=
|
||
filter.le_of_subset
|
||
(take s, suppose s ∈ sets (Inf' S),
|
||
obtain (T : set (set A)) finT (Tsub : T ⊆ (⋃ G ∈ S, sets G)) (IT : ⋂₀ T ⊆ s), from this,
|
||
have T ⊆ sets F, from subset.trans Tsub (bUnion_subset H),
|
||
have ⋂₀ T ∈ sets F, from sInter_mem_of_finite finT this,
|
||
show s ∈ sets F, from filter.is_mono _ IT this)
|
||
|
||
theorem Inf'_le {A : Type} {F : filter A} {S : set (filter A)} (FS : F ∈ S) :
|
||
Inf' S ≤ F :=
|
||
filter.le_of_subset
|
||
(take s, suppose s ∈ sets F,
|
||
have '{s} ⊆ ⋃ G ∈ S, sets G, from singleton_subset (mem_bUnion FS this),
|
||
exists.intro '{s} (and.intro _
|
||
(and.intro this (by rewrite sInter_singleton; apply subset.refl))))
|
||
|
||
theorem Inf_eq_Inf' {A : Type} (S : set (filter A)) : Inf S = Inf' S :=
|
||
le.antisymm (le_Inf' (λ F FS, Inf_le FS)) (le_Inf (λ F FS, Inf'_le FS))
|
||
|
||
theorem exists_eventually_of_eventually_Inf {A : Type} {P : A → Prop} {F : filter A}
|
||
{S : set (filter A)} (FS : F ∈ S) (H' : eventually P (Inf S))
|
||
(H : ∀₀ F₁ ∈ S, ∀₀ F₂ ∈ S, ∃₀ F ∈ S, F ≤ inf F₁ F₂) :
|
||
∃₀ F ∈ S, eventually P F :=
|
||
have P ∈ Inf' S, by rewrite -Inf_eq_Inf'; apply H',
|
||
have ∃ T : set (set A), finite T ∧ T ⊆ (⋃ F ∈ S, sets F) ∧ ⋂₀ T ⊆ P,
|
||
by rewrite sets_Inf' at this; exact this,
|
||
obtain T finT Tsub ITP, from this,
|
||
have ∃₀ F ∈ S, ⋂₀ T ∈ F,
|
||
begin
|
||
clear ITP,
|
||
induction finT with s T finT sninT ih,
|
||
{exact exists.intro F (and.intro FS (by rewrite sInter_empty; apply filter.univ_mem_sets))},
|
||
have ∃₀ F ∈ S, ⋂₀ T ∈ F, from ih (subset.trans (subset_insert _ _) Tsub),
|
||
cases this with F₁ H₁,
|
||
cases H₁ with F₁S ITF₁,
|
||
have s ∈ (⋃ F ∈ S, sets F), from Tsub !mem_insert,
|
||
cases this with F₂ H₂,
|
||
cases H₂ with F₂S sF₂,
|
||
cases H F₁S F₂S with F' HF',
|
||
cases HF' with F'S F'le,
|
||
existsi F', split, exact F'S,
|
||
show ⋂₀ insert s T ∈ sets F',
|
||
begin
|
||
rewrite sInter_insert, apply filter.inter_closed,
|
||
show s ∈ sets F', from filter.subset_of_le (le.trans F'le !inf_le_right) sF₂,
|
||
show ⋂₀ T ∈ sets F', from filter.subset_of_le (le.trans F'le !inf_le_left) ITF₁,
|
||
end
|
||
end,
|
||
obtain F FS IT, from this,
|
||
exists.intro F (and.intro FS (filter.is_mono _ ITP IT))
|
||
end filter
|
||
|
||
end set
|
||
|
||
|
||
-- move to data.finset
|
||
|
||
namespace finset
|
||
|
||
section
|
||
variables {A : Type} [decidable_linear_order A]
|
||
|
||
definition finset_to_list (s : finset A) : list A :=
|
||
quot.lift_on s
|
||
(take l, list.sort le (subtype.elt_of l))
|
||
(take a b, assume eqab, list.sort_eq_of_perm eqab)
|
||
|
||
proposition to_finset_finset_to_list (s : finset A) : to_finset (finset_to_list s) = s :=
|
||
quot.induction_on s
|
||
begin
|
||
intro l,
|
||
have H : list.nodup (list.sort le (subtype.elt_of l)),
|
||
from perm.nodup_of_perm_of_nodup (perm.symm !list.sort_perm) (subtype.has_property l),
|
||
rewrite [↑finset_to_list, -to_finset_eq_of_nodup H],
|
||
apply quot.sound,
|
||
apply list.sort_perm
|
||
end
|
||
|
||
proposition nodup_finset_to_list (s : finset A) : list.nodup (finset_to_list s) :=
|
||
quot.induction_on s
|
||
(take l, perm.nodup_of_perm_of_nodup (perm.symm !list.sort_perm) (subtype.has_property l))
|
||
|
||
proposition sorted_finset_to_list (s : finset A) : list.sorted le (finset_to_list s) :=
|
||
quot.induction_on s
|
||
(take l, list.sorted_of_strongly_sorted (list.strongly_sorted_sort _))
|
||
end
|
||
|
||
end finset
|
||
|
||
|
||
-- move to data.nat?
|
||
|
||
namespace nat
|
||
open finset
|
||
|
||
theorem succ_Max₀_not_mem (s : finset ℕ) : succ (Max₀ s) ∉ s :=
|
||
suppose succ (Max₀ s) ∈ s,
|
||
have succ (Max₀ s) ≤ Max₀ s, from le_Max₀ this,
|
||
show false, from not_succ_le_self this
|
||
|
||
end nat
|