064ecd3e3d
We also define key theorems that will be used to generate the automatically generated a well-founded subterm relation for inductive datatypes. We also prove decidability and wf theorems asap.
30 lines
911 B
Text
30 lines
911 B
Text
import data.nat
|
|
open nat eq.ops
|
|
|
|
definition fib.F (n : nat) : (Π (m : nat), m < n → nat) → nat :=
|
|
nat.cases_on n
|
|
(λ (f : Π (m : nat), m < zero → nat), succ zero)
|
|
(λ (n₁ : nat), nat.cases_on n₁
|
|
(λ (f : Π (m : nat), m < (succ zero) → nat), succ zero)
|
|
(λ (n₂ : nat) (f : Π (m : nat), m < (succ (succ n₂)) → nat),
|
|
have l₁ : succ n₂ < succ (succ n₂), from lt.base (succ n₂),
|
|
have l₂ : n₂ < succ (succ n₂), from lt.trans (lt.base n₂) l₁,
|
|
f (succ n₂) l₁ + f n₂ l₂))
|
|
|
|
definition fib (n : nat) :=
|
|
well_founded.fix fib.F n
|
|
|
|
theorem fib.zero_eq : fib 0 = 1 :=
|
|
well_founded.fix_eq fib.F 0
|
|
|
|
theorem fib.one_eq : fib 1 = 1 :=
|
|
well_founded.fix_eq fib.F 1
|
|
|
|
theorem fib.succ_succ_eq (n : nat) : fib (succ (succ n)) = fib (succ n) + fib n :=
|
|
well_founded.fix_eq fib.F (succ (succ n))
|
|
|
|
example : fib 5 = 8 :=
|
|
rfl
|
|
|
|
example : fib 6 = 13 :=
|
|
rfl
|