9d01868361
closes #502
29 lines
650 B
Text
29 lines
650 B
Text
import logic
|
|
|
|
namespace S1
|
|
axiom I : Type
|
|
definition F (X : Type) : Type := (X → Prop) → Prop
|
|
axiom unfoldd.{l} : I.{l} → F I.{l}
|
|
axiom foldd.{l} : F I.{l} → I.{l}
|
|
axiom iso1 : ∀x, foldd (unfoldd x) = x
|
|
end S1
|
|
|
|
namespace S2
|
|
universe u
|
|
axiom I : Type.{u}
|
|
definition F (X : Type) : Type := (X → Prop) → Prop
|
|
axiom unfoldd : I → F I
|
|
axiom foldd : F I → I
|
|
axiom iso1 : ∀x, foldd (unfoldd x) = x
|
|
end S2
|
|
|
|
|
|
namespace S3
|
|
section
|
|
hypothesis I : Type
|
|
definition F (X : Type) : Type := (X → Prop) → Prop
|
|
hypothesis unfoldd : I → F I
|
|
hypothesis foldd : F I → I
|
|
hypothesis iso1 : ∀x, foldd (unfoldd x) = x
|
|
end
|
|
end S3
|