52 lines
1.7 KiB
Text
52 lines
1.7 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Author: Leonardo de Moura
|
||
|
||
import logic.axioms.hilbert logic.eq
|
||
open eq.ops nonempty inhabited
|
||
|
||
-- Diaconescu’s theorem
|
||
-- Show that Excluded middle follows from
|
||
-- Hilbert's choice operator, function extensionality and Prop extensionality
|
||
context
|
||
hypothesis propext {a b : Prop} : (a → b) → (b → a) → a = b
|
||
parameter p : Prop
|
||
|
||
private definition u [reducible] := epsilon (λx, x = true ∨ p)
|
||
|
||
private definition v [reducible] := epsilon (λx, x = false ∨ p)
|
||
|
||
private lemma u_def : u = true ∨ p :=
|
||
epsilon_spec (exists.intro true (or.inl rfl))
|
||
|
||
private lemma v_def : v = false ∨ p :=
|
||
epsilon_spec (exists.intro false (or.inl rfl))
|
||
|
||
private lemma uv_implies_p : ¬(u = v) ∨ p :=
|
||
or.elim u_def
|
||
(assume Hut : u = true, or.elim v_def
|
||
(assume Hvf : v = false,
|
||
have Hne : ¬(u = v), from Hvf⁻¹ ▸ Hut⁻¹ ▸ true_ne_false,
|
||
or.inl Hne)
|
||
(assume Hp : p, or.inr Hp))
|
||
(assume Hp : p, or.inr Hp)
|
||
|
||
private lemma p_implies_uv : p → u = v :=
|
||
assume Hp : p,
|
||
have Hpred : (λ x, x = true ∨ p) = (λ x, x = false ∨ p), from
|
||
funext (take x : Prop,
|
||
have Hl : (x = true ∨ p) → (x = false ∨ p), from
|
||
assume A, or.inr Hp,
|
||
have Hr : (x = false ∨ p) → (x = true ∨ p), from
|
||
assume A, or.inr Hp,
|
||
show (x = true ∨ p) = (x = false ∨ p), from
|
||
propext Hl Hr),
|
||
show u = v, from
|
||
Hpred ▸ (eq.refl (epsilon (λ x, x = true ∨ p)))
|
||
|
||
theorem em : p ∨ ¬p :=
|
||
have H : ¬(u = v) → ¬p, from mt p_implies_uv,
|
||
or.elim uv_implies_p
|
||
(assume Hne : ¬(u = v), or.inr (H Hne))
|
||
(assume Hp : p, or.inl Hp)
|
||
end
|