231 lines
7.6 KiB
Text
231 lines
7.6 KiB
Text
/-
|
|
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Module: data.set.function
|
|
Author: Jeremy Avigad, Andrew Zipperer
|
|
|
|
Functions between subsets of finite types.
|
|
-/
|
|
import .basic
|
|
import algebra.function
|
|
open function eq.ops
|
|
|
|
namespace set
|
|
|
|
variables {X Y Z : Type}
|
|
|
|
abbreviation eq_on (f1 f2 : X → Y) (a : set X) : Prop :=
|
|
∀₀ x ∈ a, f1 x = f2 x
|
|
|
|
/- image -/
|
|
|
|
definition image (f : X → Y) (a : set X) : set Y := {y : Y | ∃x, x ∈ a ∧ f x = y}
|
|
notation f `'[`:max a `]` := image f a
|
|
|
|
theorem image_eq_image_of_eq_on {f1 f2 : X → Y} {a : set X} (H1 : eq_on f1 f2 a) :
|
|
f1 '[a] = f2 '[a] :=
|
|
setext (take y, iff.intro
|
|
(assume H2,
|
|
obtain x (H3 : x ∈ a ∧ f1 x = y), from H2,
|
|
have H4 : x ∈ a, from and.left H3,
|
|
have H5 : f2 x = y, from (H1 H4)⁻¹ ⬝ and.right H3,
|
|
exists.intro x (and.intro H4 H5))
|
|
(assume H2,
|
|
obtain x (H3 : x ∈ a ∧ f2 x = y), from H2,
|
|
have H4 : x ∈ a, from and.left H3,
|
|
have H5 : f1 x = y, from (H1 H4) ⬝ and.right H3,
|
|
exists.intro x (and.intro H4 H5)))
|
|
|
|
/- maps to -/
|
|
|
|
definition maps_to [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := ∀⦃x⦄, x ∈ a → f x ∈ b
|
|
|
|
theorem maps_to_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eq_on_a : eq_on f1 f2 a)
|
|
(maps_to_f1 : maps_to f1 a b) :
|
|
maps_to f2 a b :=
|
|
take x,
|
|
assume xa : x ∈ a,
|
|
have H : f1 x ∈ b, from maps_to_f1 xa,
|
|
show f2 x ∈ b, from eq_on_a xa ▸ H
|
|
|
|
theorem maps_to_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
|
|
(H1 : maps_to g b c) (H2 : maps_to f a b) : maps_to (g ∘ f) a c :=
|
|
take x, assume H : x ∈ a, H1 (H2 H)
|
|
|
|
/- injectivity -/
|
|
|
|
definition inj_on [reducible] (f : X → Y) (a : set X) : Prop :=
|
|
∀⦃x1 x2 : X⦄, x1 ∈ a → x2 ∈ a → f x1 = f x2 → x1 = x2
|
|
|
|
theorem inj_on_of_eq_on {f1 f2 : X → Y} {a : set X} (eq_f1_f2 : eq_on f1 f2 a)
|
|
(inj_f1 : inj_on f1 a) :
|
|
inj_on f2 a :=
|
|
take x1 x2 : X,
|
|
assume ax1 : x1 ∈ a,
|
|
assume ax2 : x2 ∈ a,
|
|
assume H : f2 x1 = f2 x2,
|
|
have H' : f1 x1 = f1 x2, from eq_f1_f2 ax1 ⬝ H ⬝ (eq_f1_f2 ax2)⁻¹,
|
|
show x1 = x2, from inj_f1 ax1 ax2 H'
|
|
|
|
theorem inj_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y}
|
|
(fab : maps_to f a b) (Hg : inj_on g b) (Hf: inj_on f a) :
|
|
inj_on (g ∘ f) a :=
|
|
take x1 x2 : X,
|
|
assume x1a : x1 ∈ a,
|
|
assume x2a : x2 ∈ a,
|
|
have fx1b : f x1 ∈ b, from fab x1a,
|
|
have fx2b : f x2 ∈ b, from fab x2a,
|
|
assume H1 : g (f x1) = g (f x2),
|
|
have H2 : f x1 = f x2, from Hg fx1b fx2b H1,
|
|
show x1 = x2, from Hf x1a x2a H2
|
|
|
|
/- surjectivity -/
|
|
|
|
definition surj_on [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := b ⊆ f '[a]
|
|
|
|
theorem surj_on_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eq_f1_f2 : eq_on f1 f2 a)
|
|
(surj_f1 : surj_on f1 a b) :
|
|
surj_on f2 a b :=
|
|
take y, assume H : y ∈ b,
|
|
obtain x (H1 : x ∈ a ∧ f1 x = y), from surj_f1 H,
|
|
have H2 : x ∈ a, from and.left H1,
|
|
have H3 : f2 x = y, from (eq_f1_f2 H2)⁻¹ ⬝ and.right H1,
|
|
exists.intro x (and.intro H2 H3)
|
|
|
|
theorem surj_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
|
|
(Hg : surj_on g b c) (Hf: surj_on f a b) :
|
|
surj_on (g ∘ f) a c :=
|
|
take z,
|
|
assume zc : z ∈ c,
|
|
obtain y (H1 : y ∈ b ∧ g y = z), from Hg zc,
|
|
obtain x (H2 : x ∈ a ∧ f x = y), from Hf (and.left H1),
|
|
show ∃x, x ∈ a ∧ g (f x) = z, from
|
|
exists.intro x
|
|
(and.intro
|
|
(and.left H2)
|
|
(calc
|
|
g (f x) = g y : {and.right H2}
|
|
... = z : and.right H1))
|
|
|
|
/- bijectivity -/
|
|
|
|
definition bij_on [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop :=
|
|
maps_to f a b ∧ inj_on f a ∧ surj_on f a b
|
|
|
|
theorem bij_on_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eqf : eq_on f1 f2 a)
|
|
(H : bij_on f1 a b) : bij_on f2 a b :=
|
|
match H with and.intro Hmap (and.intro Hinj Hsurj) :=
|
|
and.intro
|
|
(maps_to_of_eq_on eqf Hmap)
|
|
(and.intro
|
|
(inj_on_of_eq_on eqf Hinj)
|
|
(surj_on_of_eq_on eqf Hsurj))
|
|
end
|
|
|
|
theorem bij_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
|
|
(Hg : bij_on g b c) (Hf: bij_on f a b) :
|
|
bij_on (g ∘ f) a c :=
|
|
match Hg with and.intro Hgmap (and.intro Hginj Hgsurj) :=
|
|
match Hf with and.intro Hfmap (and.intro Hfinj Hfsurj) :=
|
|
and.intro
|
|
(maps_to_compose Hgmap Hfmap)
|
|
(and.intro
|
|
(inj_on_compose Hfmap Hginj Hfinj)
|
|
(surj_on_compose Hgsurj Hfsurj))
|
|
end
|
|
end
|
|
|
|
/- left inverse -/
|
|
|
|
-- g is a left inverse to f on a
|
|
definition left_inv_on [reducible] (g : Y → X) (f : X → Y) (a : set X) : Prop :=
|
|
∀₀ x ∈ a, g (f x) = x
|
|
|
|
theorem left_inv_on_of_eq_on_left {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y}
|
|
(fab : maps_to f a b) (eqg : eq_on g1 g2 b) (H : left_inv_on g1 f a) : left_inv_on g2 f a :=
|
|
take x,
|
|
assume xa : x ∈ a,
|
|
calc
|
|
g2 (f x) = g1 (f x) : (eqg (fab xa))⁻¹
|
|
... = x : H xa
|
|
|
|
theorem left_inv_on_of_eq_on_right {g : Y → X} {f1 f2 : X → Y} {a : set X}
|
|
(eqf : eq_on f1 f2 a) (H : left_inv_on g f1 a) : left_inv_on g f2 a :=
|
|
take x,
|
|
assume xa : x ∈ a,
|
|
calc
|
|
g (f2 x) = g (f1 x) : {(eqf xa)⁻¹}
|
|
... = x : H xa
|
|
|
|
theorem inj_on_of_left_inv_on {g : Y → X} {f : X → Y} {a : set X} (H : left_inv_on g f a) :
|
|
inj_on f a :=
|
|
take x1 x2,
|
|
assume x1a : x1 ∈ a,
|
|
assume x2a : x2 ∈ a,
|
|
assume H1 : f x1 = f x2,
|
|
calc
|
|
x1 = g (f x1) : H x1a
|
|
... = g (f x2) : H1
|
|
... = x2 : H x2a
|
|
|
|
theorem left_inv_on_compose {f' : Y → X} {g' : Z → Y} {g : Y → Z} {f : X → Y}
|
|
{a : set X} {b : set Y} (fab : maps_to f a b)
|
|
(Hf : left_inv_on f' f a) (Hg : left_inv_on g' g b) : left_inv_on (f' ∘ g') (g ∘ f) a :=
|
|
take x : X,
|
|
assume xa : x ∈ a,
|
|
have fxb : f x ∈ b, from fab xa,
|
|
calc
|
|
f' (g' (g (f x))) = f' (f x) : Hg fxb
|
|
... = x : Hf xa
|
|
|
|
/- right inverse -/
|
|
|
|
-- g is a right inverse to f on a
|
|
definition right_inv_on [reducible] (g : Y → X) (f : X → Y) (b : set Y) : Prop :=
|
|
left_inv_on f g b
|
|
|
|
theorem right_inv_on_of_eq_on_left {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y}
|
|
(eqg : eq_on g1 g2 b) (H : right_inv_on g1 f b) : right_inv_on g2 f b :=
|
|
left_inv_on_of_eq_on_right eqg H
|
|
|
|
theorem right_inv_on_of_eq_on_right {g : Y → X} {f1 f2 : X → Y} {a : set X} {b : set Y}
|
|
(gba : maps_to g b a) (eqf : eq_on f1 f2 a) (H : right_inv_on g f1 b) : right_inv_on g f2 b :=
|
|
left_inv_on_of_eq_on_left gba eqf H
|
|
|
|
theorem surj_on_of_right_inv_on {g : Y → X} {f : X → Y} {a : set X} {b : set Y}
|
|
(gba : maps_to g b a) (H : right_inv_on g f b) :
|
|
surj_on f a b :=
|
|
take y,
|
|
assume yb : y ∈ b,
|
|
have gya : g y ∈ a, from gba yb,
|
|
have H1 : f (g y) = y, from H yb,
|
|
exists.intro (g y) (and.intro gya H1)
|
|
|
|
theorem right_inv_on_compose {f' : Y → X} {g' : Z → Y} {g : Y → Z} {f : X → Y}
|
|
{c : set Z} {b : set Y} (g'cb : maps_to g' c b)
|
|
(Hf : right_inv_on f' f b) (Hg : right_inv_on g' g c) : right_inv_on (f' ∘ g') (g ∘ f) c :=
|
|
left_inv_on_compose g'cb Hg Hf
|
|
|
|
theorem eq_on_of_left_inv_of_right_inv {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y}
|
|
(g2ba : maps_to g2 b a) (Hg1 : left_inv_on g1 f a) (Hg2 : right_inv_on g2 f b) : eq_on g1 g2 b :=
|
|
take y,
|
|
assume yb : y ∈ b,
|
|
calc
|
|
g1 y = g1 (f (g2 y)) : {(Hg2 yb)⁻¹}
|
|
... = g2 y : Hg1 (g2ba yb)
|
|
|
|
/- inverses -/
|
|
|
|
-- g is an inverse to f viewed as a map from a to b
|
|
definition inv_on [reducible] (g : Y → X) (f : X → Y) (a : set X) (b : set Y) : Prop :=
|
|
left_inv_on g f a ∧ right_inv_on g f b
|
|
|
|
theorem bij_on_of_inv_on {g : Y → X} {f : X → Y} {a : set X} {b : set Y} (fab : maps_to f a b)
|
|
(gba : maps_to g b a) (H : inv_on g f a b) : bij_on f a b :=
|
|
and.intro fab
|
|
(and.intro
|
|
(inj_on_of_left_inv_on (and.left H))
|
|
(surj_on_of_right_inv_on gba (and.right H)))
|
|
|
|
end set
|