lean2/hott/types/pointed.hlean
2016-02-22 11:15:39 -08:00

483 lines
16 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer, Floris van Doorn
Ported from Coq HoTT
-/
import arity .eq .bool .unit .sigma .nat.basic prop_trunc
open is_trunc eq prod sigma nat equiv option is_equiv bool unit algebra equiv.ops
structure pointed [class] (A : Type) :=
(point : A)
structure pType :=
(carrier : Type)
(Point : carrier)
notation `Type*` := pType
section
universe variable u
structure ptrunctype (n : trunc_index) extends trunctype.{u} n, pType.{u}
end
notation n `-Type*` := ptrunctype n
abbreviation pSet [parsing_only] := 0-Type*
notation `Set*` := pSet
namespace pointed
attribute pType.carrier [coercion]
variables {A B : Type}
definition pt [unfold 2] [H : pointed A] := point A
definition Point [unfold 1] (A : Type*) := pType.Point A
abbreviation carrier [unfold 1] (A : Type*) := pType.carrier A
protected definition Mk [constructor] {A : Type} (a : A) := pType.mk A a
protected definition MK [constructor] (A : Type) (a : A) := pType.mk A a
protected definition mk' [constructor] (A : Type) [H : pointed A] : Type* :=
pType.mk A (point A)
definition pointed_carrier [instance] [constructor] (A : Type*) : pointed A :=
pointed.mk (Point A)
-- Any contractible type is pointed
definition pointed_of_is_contr [instance] [priority 800] [constructor]
(A : Type) [H : is_contr A] : pointed A :=
pointed.mk !center
-- A pi type with a pointed target is pointed
definition pointed_pi [instance] [constructor] (P : A → Type) [H : Πx, pointed (P x)]
: pointed (Πx, P x) :=
pointed.mk (λx, pt)
-- A sigma type of pointed components is pointed
definition pointed_sigma [instance] [constructor] (P : A → Type) [G : pointed A]
[H : pointed (P pt)] : pointed (Σx, P x) :=
pointed.mk ⟨pt,pt⟩
definition pointed_prod [instance] [constructor] (A B : Type) [H1 : pointed A] [H2 : pointed B]
: pointed (A × B) :=
pointed.mk (pt,pt)
definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) :=
pointed.mk idp
definition pointed_bool [instance] [constructor] : pointed bool :=
pointed.mk ff
definition pprod [constructor] (A B : Type*) : Type* :=
pointed.mk' (A × B)
infixr ` ×* `:35 := pprod
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
pointed.mk (f pt)
definition ploop_space [reducible] [constructor] (A : Type*) : Type* :=
pointed.mk' (point A = point A)
definition iterated_ploop_space [unfold 1] [reducible] : → Type* → Type*
| iterated_ploop_space 0 X := X
| iterated_ploop_space (n+1) X := ploop_space (iterated_ploop_space n X)
prefix `Ω`:(max+5) := ploop_space
notation `Ω[`:95 n:0 `] `:0 A:95 := iterated_ploop_space n A
definition rfln [constructor] [reducible] {A : Type*} {n : } : Ω[n] A := pt
definition refln [constructor] [reducible] (A : Type*) (n : ) : Ω[n] A := pt
definition refln_eq_refl (A : Type*) (n : ) : rfln = rfl :> Ω[succ n] A := rfl
definition iterated_loop_space [unfold 3] (A : Type) [H : pointed A] (n : ) : Type :=
Ω[n] (pointed.mk' A)
open equiv.ops
definition pType_eq {A B : Type*} (f : A ≃ B) (p : f pt = pt) : A = B :=
begin
cases A with A a, cases B with B b, esimp at *,
fapply apd011 @pType.mk,
{ apply ua f},
{ rewrite [cast_ua,p]},
end
definition pType_eq_elim {A B : Type*} (p : A = B :> Type*)
: Σ(p : carrier A = carrier B :> Type), cast p pt = pt :=
by induction p; exact ⟨idp, idp⟩
protected definition pType.sigma_char.{u} : pType.{u} ≃ Σ(X : Type.{u}), X :=
begin
fapply equiv.MK,
{ intro x, induction x with X x, exact ⟨X, x⟩},
{ intro x, induction x with X x, exact pointed.MK X x},
{ intro x, induction x with X x, reflexivity},
{ intro x, induction x with X x, reflexivity},
end
definition add_point [constructor] (A : Type) : Type* :=
pointed.Mk (none : option A)
postfix `₊`:(max+1) := add_point
-- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A")
end pointed open pointed
protected definition ptrunctype.mk' [constructor] (n : trunc_index)
(A : Type) [pointed A] [is_trunc n A] : n-Type* :=
ptrunctype.mk A _ pt
protected definition pSet.mk [constructor] := @ptrunctype.mk (-1.+1)
protected definition pSet.mk' [constructor] := ptrunctype.mk' (-1.+1)
definition ptrunctype_of_trunctype [constructor] {n : trunc_index} (A : n-Type) (a : A) : n-Type* :=
ptrunctype.mk A _ a
definition ptrunctype_of_pType [constructor] {n : trunc_index} (A : Type*) (H : is_trunc n A)
: n-Type* :=
ptrunctype.mk A _ pt
definition pSet_of_Set [constructor] (A : Set) (a : A) : Set* :=
ptrunctype.mk A _ a
definition pSet_of_pType [constructor] (A : Type*) (H : is_set A) : Set* :=
ptrunctype.mk A _ pt
attribute pType._trans_to_carrier ptrunctype.to_pType ptrunctype.to_trunctype [unfold 2]
definition ptrunctype_eq {n : trunc_index} {A B : n-Type*} (p : A = B :> Type) (q : cast p pt = pt)
: A = B :=
begin
induction A with A HA a, induction B with B HB b, esimp at *,
induction p, induction q,
esimp,
refine ap010 (ptrunctype.mk A) _ a,
exact !is_prop.elim
end
definition ptrunctype_eq_of_pType_eq {n : trunc_index} {A B : n-Type*} (p : A = B :> Type*)
: A = B :=
begin
cases pType_eq_elim p with q r,
exact ptrunctype_eq q r
end
namespace pointed
definition pbool [constructor] : Set* :=
pSet.mk' bool
definition punit [constructor] : Set* :=
pSet.mk' unit
/- properties of iterated loop space -/
variable (A : Type*)
definition loop_space_succ_eq_in (n : ) : Ω[succ n] A = Ω[n] (Ω A) :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap ploop_space IH}
end
definition loop_space_add (n m : ) : Ω[n] (Ω[m] A) = Ω[m+n] (A) :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap ploop_space IH}
end
definition loop_space_succ_eq_out (n : ) : Ω[succ n] A = Ω(Ω[n] A) :=
idp
variable {A}
/- the equality [loop_space_succ_eq_in] preserves concatenation -/
theorem loop_space_succ_eq_in_concat {n : } (p q : Ω[succ (succ n)] A) :
transport carrier (ap ploop_space (loop_space_succ_eq_in A n)) (p ⬝ q)
= transport carrier (ap ploop_space (loop_space_succ_eq_in A n)) p
⬝ transport carrier (ap ploop_space (loop_space_succ_eq_in A n)) q :=
begin
rewrite [-+tr_compose, ↑function.compose],
rewrite [+@transport_eq_FlFr_D _ _ _ _ Point Point, +con.assoc], apply whisker_left,
rewrite [-+con.assoc], apply whisker_right, rewrite [con_inv_cancel_right, ▸*, -ap_con]
end
definition loop_space_loop_irrel (p : point A = point A) : Ω(pointed.Mk p) = Ω[2] A :=
begin
intros, fapply pType_eq,
{ esimp, transitivity _,
apply eq_equiv_fn_eq_of_equiv (equiv_eq_closed_right _ p⁻¹),
esimp, apply eq_equiv_eq_closed, apply con.right_inv, apply con.right_inv},
{ esimp, apply con.left_inv}
end
definition iterated_loop_space_loop_irrel (n : ) (p : point A = point A)
: Ω[succ n](pointed.Mk p) = Ω[succ (succ n)] A :> pType :=
calc
Ω[succ n](pointed.Mk p) = Ω[n](Ω (pointed.Mk p)) : loop_space_succ_eq_in
... = Ω[n] (Ω[2] A) : loop_space_loop_irrel
... = Ω[2+n] A : loop_space_add
... = Ω[n+2] A : by rewrite [algebra.add.comm]
end pointed open pointed
/- pointed maps -/
structure pmap (A B : Type*) :=
(to_fun : A → B)
(resp_pt : to_fun (Point A) = Point B)
namespace pointed
abbreviation respect_pt [unfold 3] := @pmap.resp_pt
notation `map₊` := pmap
infix ` →* `:30 := pmap
attribute pmap.to_fun [coercion]
end pointed open pointed
/- pointed homotopies -/
structure phomotopy {A B : Type*} (f g : A →* B) :=
(homotopy : f ~ g)
(homotopy_pt : homotopy pt ⬝ respect_pt g = respect_pt f)
namespace pointed
variables {A B C D : Type*} {f g h : A →* B}
infix ` ~* `:50 := phomotopy
abbreviation to_homotopy_pt [unfold 5] := @phomotopy.homotopy_pt
abbreviation to_homotopy [coercion] [unfold 5] (p : f ~* g) : Πa, f a = g a :=
phomotopy.homotopy p
/- categorical properties of pointed maps -/
definition pid [constructor] (A : Type*) : A →* A :=
pmap.mk id idp
definition pcompose [constructor] (g : B →* C) (f : A →* B) : A →* C :=
pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g)
infixr ` ∘* `:60 := pcompose
definition passoc (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) :=
begin
fconstructor, intro a, reflexivity,
cases A, cases B, cases C, cases D, cases f with f pf, cases g with g pg, cases h with h ph,
esimp at *,
induction pf, induction pg, induction ph, reflexivity
end
definition pid_comp (f : A →* B) : pid B ∘* f ~* f :=
begin
fconstructor,
{ intro a, reflexivity},
{ reflexivity}
end
definition comp_pid (f : A →* B) : f ∘* pid A ~* f :=
begin
fconstructor,
{ intro a, reflexivity},
{ reflexivity}
end
/- equivalences and equalities -/
definition pmap_eq (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g :=
begin
cases f with f p, cases g with g q,
esimp at *,
fapply apo011 pmap.mk,
{ exact eq_of_homotopy r},
{ apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con,
rewrite [ap_eq_ap10,↑ap10,apd10_eq_of_homotopy,s]}
end
definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) :=
begin
fapply equiv.MK,
{ intro f a, cases f with f p, exact f (some a)},
{ intro f, fconstructor,
intro a, cases a, exact pt, exact f a,
reflexivity},
{ intro f, reflexivity},
{ intro f, cases f with f p, esimp, fapply pmap_eq,
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
{ esimp, exact !con.left_inv⁻¹}},
end
-- set_option pp.notation false
-- definition pmap_equiv_right (A : Type*) (B : Type)
-- : (Σ(b : B), A →* (pointed.Mk b)) ≃ (A → B) :=
-- begin
-- fapply equiv.MK,
-- { intro u a, cases u with b f, cases f with f p, esimp at f, exact f a},
-- { intro f, refine ⟨f pt, _⟩, fapply pmap.mk,
-- intro a, esimp, exact f a,
-- reflexivity},
-- { intro f, reflexivity},
-- { intro u, cases u with b f, cases f with f p, esimp at *, apply sigma_eq p,
-- esimp, apply sorry
-- }
-- end
definition pmap_bool_equiv (B : Type*) : (pbool →* B) ≃ B :=
begin
fapply equiv.MK,
{ intro f, cases f with f p, exact f tt},
{ intro b, fconstructor,
intro u, cases u, exact pt, exact b,
reflexivity},
{ intro b, reflexivity},
{ intro f, cases f with f p, esimp, fapply pmap_eq,
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
{ esimp, exact !con.left_inv⁻¹}},
end
/- instances of pointed maps -/
-- The constant pointed map between any two types
definition pconst [constructor] (A B : Type*) : A →* B :=
pmap.mk (λ a, Point B) idp
definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B :=
begin
fconstructor,
{ intro p, exact !respect_pt⁻¹ ⬝ ap f p ⬝ !respect_pt},
{ esimp, apply con.left_inv}
end
definition apn [unfold 3] (n : ) (f : map₊ A B) : Ω[n] A →* Ω[n] B :=
begin
induction n with n IH,
{ exact f},
{ esimp [iterated_ploop_space], exact ap1 IH}
end
definition pcast [constructor] {A B : Type*} (p : A = B) : A →* B :=
proof pmap.mk (cast (ap pType.carrier p)) (by induction p; reflexivity) qed
definition pinverse [constructor] {X : Type*} : Ω X →* Ω X :=
pmap.mk eq.inverse idp
/- properties about these instances -/
definition is_equiv_ap1 {A B : Type*} (f : A →* B) [is_equiv f] : is_equiv (ap1 f) :=
begin
induction B with B b, induction f with f pf, esimp at *, cases pf, esimp,
apply is_equiv.homotopy_closed (ap f),
intro p, exact !idp_con⁻¹
end
-- TODO:
-- definition apn_compose (n : ) (g : B →* C) (f : A →* B) : apn n (g ∘* f) ~* apn n g ∘* apn n f :=
-- _
definition ap1_compose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f :=
begin
induction B, induction C, induction g with g pg, induction f with f pf, esimp at *,
induction pg, induction pf,
fconstructor,
{ intro p, esimp, apply whisker_left, exact ap_compose g f p ⬝ ap (ap g) !idp_con⁻¹},
{ reflexivity}
end
/- categorical properties of pointed homotopies -/
protected definition phomotopy.refl [constructor] [refl] (f : A →* B) : f ~* f :=
begin
fconstructor,
{ intro a, exact idp},
{ apply idp_con}
end
protected definition phomotopy.rfl [constructor] {A B : Type*} {f : A →* B} : f ~* f :=
phomotopy.refl f
protected definition phomotopy.trans [constructor] [trans] (p : f ~* g) (q : g ~* h)
: f ~* h :=
phomotopy.mk (λa, p a ⬝ q a)
abstract begin
induction f, induction g, induction p with p p', induction q with q q', esimp at *,
induction p', induction q', esimp, apply con.assoc
end end
protected definition phomotopy.symm [constructor] [symm] (p : f ~* g) : g ~* f :=
phomotopy.mk (λa, (p a)⁻¹)
abstract begin
induction f, induction p with p p', esimp at *,
induction p', esimp, apply inv_con_cancel_left
end end
infix ` ⬝* `:75 := phomotopy.trans
postfix `⁻¹*`:(max+1) := phomotopy.symm
definition phomotopy_of_eq [constructor] {A B : Type*} {f g : A →* B} (p : f = g) : f ~* g :=
phomotopy.mk (ap010 pmap.to_fun p) begin induction p, apply idp_con end
definition pconcat_eq [constructor] {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g = h)
: f ~* h :=
p ⬝* phomotopy_of_eq q
definition eq_pconcat [constructor] {A B : Type*} {f g h : A →* B} (p : f = g) (q : g ~* h)
: f ~* h :=
phomotopy_of_eq p ⬝* q
definition pwhisker_left [constructor] (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g :=
phomotopy.mk (λa, ap h (p a))
abstract begin
induction A, induction B, induction C,
induction f with f pf, induction g with g pg, induction h with h ph,
induction p with p p', esimp at *, induction ph, induction pg, induction p', reflexivity
end end
definition pwhisker_right [constructor] (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h :=
phomotopy.mk (λa, p (h a))
abstract begin
induction A, induction B, induction C,
induction f with f pf, induction g with g pg, induction h with h ph,
induction p with p p', esimp at *, induction ph, induction pg, induction p', esimp,
exact !idp_con⁻¹
end end
definition pconcat2 [constructor] {A B C : Type*} {h i : B →* C} {f g : A →* B}
(q : h ~* i) (p : f ~* g) : h ∘* f ~* i ∘* g :=
pwhisker_left _ p ⬝* pwhisker_right _ q
definition ap1_pinverse {A : Type*} : ap1 (@pinverse A) ~* @pinverse (Ω A) :=
begin
fapply phomotopy.mk,
{ intro p, esimp, refine !idp_con ⬝ _, exact !inverse_eq_inverse2⁻¹ },
{ reflexivity}
end
definition ap1_id [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) :=
begin
fapply phomotopy.mk,
{ intro p, esimp, refine !idp_con ⬝ !ap_id},
{ reflexivity}
end
definition eq_of_phomotopy (p : f ~* g) : f = g :=
begin
fapply pmap_eq,
{ intro a, exact p a},
{ exact !to_homotopy_pt⁻¹}
end
definition pap {A B C D : Type*} (F : (A →* B) → (C →* D))
{f g : A →* B} (p : f ~* g) : F f ~* F g :=
phomotopy.mk (ap010 F (eq_of_phomotopy p)) begin cases eq_of_phomotopy p, apply idp_con end
-- TODO: give proof without using function extensionality (commented out part is a start)
definition ap1_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g)
: ap1 f ~* ap1 g :=
pap ap1 p
/- begin
induction p with p q, induction f with f pf, induction g with g pg, induction B with B b,
esimp at *, induction q, induction pg,
fapply phomotopy.mk,
{ intro l, esimp, refine _ ⬝ !idp_con⁻¹, refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con,
apply ap_con_eq_con_ap},
{ esimp, }
end -/
infix ` ⬝*p `:75 := pconcat_eq
infix ` ⬝p* `:75 := eq_pconcat
end pointed