789 lines
36 KiB
Text
789 lines
36 KiB
Text
/-
|
||
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Leonardo de Moura
|
||
|
||
Set-like operations on lists
|
||
-/
|
||
import data.list.basic data.list.comb
|
||
open nat function decidable helper_tactics eq.ops
|
||
|
||
namespace list
|
||
section erase
|
||
variable {A : Type}
|
||
variable [H : decidable_eq A]
|
||
include H
|
||
|
||
definition erase (a : A) : list A → list A
|
||
| [] := []
|
||
| (b::l) :=
|
||
match H a b with
|
||
| inl e := l
|
||
| inr n := b :: erase l
|
||
end
|
||
|
||
lemma erase_nil (a : A) : erase a [] = [] :=
|
||
rfl
|
||
|
||
lemma erase_cons_head (a : A) (l : list A) : erase a (a :: l) = l :=
|
||
show match H a a with | inl e := l | inr n := a :: erase a l end = l,
|
||
by rewrite decidable_eq_inl_refl
|
||
|
||
lemma erase_cons_tail {a b : A} (l : list A) : a ≠ b → erase a (b::l) = b :: erase a l :=
|
||
assume h : a ≠ b,
|
||
show match H a b with | inl e := l | inr n₁ := b :: erase a l end = b :: erase a l,
|
||
by rewrite (decidable_eq_inr_neg h)
|
||
|
||
lemma length_erase_of_mem {a : A} : ∀ {l}, a ∈ l → length (erase a l) = pred (length l)
|
||
| [] h := rfl
|
||
| [x] h := by rewrite [mem_singleton h, erase_cons_head]
|
||
| (x::y::xs) h :=
|
||
by_cases
|
||
(suppose a = x, by rewrite [this, erase_cons_head])
|
||
(suppose a ≠ x,
|
||
assert ainyxs : a ∈ y::xs, from or_resolve_right h this,
|
||
by rewrite [erase_cons_tail _ this, *length_cons, length_erase_of_mem ainyxs])
|
||
|
||
lemma length_erase_of_not_mem {a : A} : ∀ {l}, a ∉ l → length (erase a l) = length l
|
||
| [] h := rfl
|
||
| (x::xs) h :=
|
||
assert anex : a ≠ x, from λ aeqx : a = x, absurd (or.inl aeqx) h,
|
||
assert aninxs : a ∉ xs, from λ ainxs : a ∈ xs, absurd (or.inr ainxs) h,
|
||
by rewrite [erase_cons_tail _ anex, length_cons, length_erase_of_not_mem aninxs]
|
||
|
||
lemma erase_append_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → erase a (l₁++l₂) = erase a l₁ ++ l₂
|
||
| [] l₂ h := absurd h !not_mem_nil
|
||
| (x::xs) l₂ h :=
|
||
by_cases
|
||
(λ aeqx : a = x, by rewrite [aeqx, append_cons, *erase_cons_head])
|
||
(λ anex : a ≠ x,
|
||
assert ainxs : a ∈ xs, from mem_of_ne_of_mem anex h,
|
||
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_left l₂ ainxs])
|
||
|
||
lemma erase_append_right {a : A} : ∀ {l₁} (l₂), a ∉ l₁ → erase a (l₁++l₂) = l₁ ++ erase a l₂
|
||
| [] l₂ h := rfl
|
||
| (x::xs) l₂ h :=
|
||
by_cases
|
||
(λ aeqx : a = x, by rewrite aeqx at h; exact (absurd !mem_cons h))
|
||
(λ anex : a ≠ x,
|
||
assert nainxs : a ∉ xs, from not_mem_of_not_mem_cons h,
|
||
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_right l₂ nainxs])
|
||
|
||
lemma erase_sub (a : A) : ∀ l, erase a l ⊆ l
|
||
| [] := λ x xine, xine
|
||
| (x::xs) := λ y xine,
|
||
by_cases
|
||
(λ aeqx : a = x, by rewrite [aeqx at xine, erase_cons_head at xine]; exact (or.inr xine))
|
||
(λ anex : a ≠ x,
|
||
assert yinxe : y ∈ x :: erase a xs, by rewrite [erase_cons_tail _ anex at xine]; exact xine,
|
||
assert subxs : erase a xs ⊆ xs, from erase_sub xs,
|
||
by_cases
|
||
(λ yeqx : y = x, by rewrite yeqx; apply mem_cons)
|
||
(λ ynex : y ≠ x,
|
||
assert yine : y ∈ erase a xs, from mem_of_ne_of_mem ynex yinxe,
|
||
assert yinxs : y ∈ xs, from subxs yine,
|
||
or.inr yinxs))
|
||
|
||
theorem mem_erase_of_ne_of_mem {a b : A} : ∀ {l : list A}, a ≠ b → a ∈ l → a ∈ erase b l
|
||
| [] n i := absurd i !not_mem_nil
|
||
| (c::l) n i := by_cases
|
||
(λ beqc : b = c,
|
||
assert ainl : a ∈ l, from or.elim (eq_or_mem_of_mem_cons i)
|
||
(λ aeqc : a = c, absurd aeqc (beqc ▸ n))
|
||
(λ ainl : a ∈ l, ainl),
|
||
by rewrite [beqc, erase_cons_head]; exact ainl)
|
||
(λ bnec : b ≠ c, by_cases
|
||
(λ aeqc : a = c,
|
||
assert aux : a ∈ c :: erase b l, by rewrite [aeqc]; exact !mem_cons,
|
||
by rewrite [erase_cons_tail _ bnec]; exact aux)
|
||
(λ anec : a ≠ c,
|
||
have ainl : a ∈ l, from mem_of_ne_of_mem anec i,
|
||
have ainel : a ∈ erase b l, from mem_erase_of_ne_of_mem n ainl,
|
||
assert aux : a ∈ c :: erase b l, from mem_cons_of_mem _ ainel,
|
||
by rewrite [erase_cons_tail _ bnec]; exact aux)) --
|
||
|
||
theorem mem_of_mem_erase {a b : A} : ∀ {l}, a ∈ erase b l → a ∈ l
|
||
| [] i := absurd i !not_mem_nil
|
||
| (c::l) i := by_cases
|
||
(λ beqc : b = c, by rewrite [beqc at i, erase_cons_head at i]; exact (mem_cons_of_mem _ i))
|
||
(λ bnec : b ≠ c,
|
||
have i₁ : a ∈ c :: erase b l, by rewrite [erase_cons_tail _ bnec at i]; exact i,
|
||
or.elim (eq_or_mem_of_mem_cons i₁)
|
||
(λ aeqc : a = c, by rewrite [aeqc]; exact !mem_cons)
|
||
(λ ainel : a ∈ erase b l,
|
||
have ainl : a ∈ l, from mem_of_mem_erase ainel,
|
||
mem_cons_of_mem _ ainl))
|
||
|
||
theorem all_erase_of_all {p : A → Prop} (a : A) : ∀ {l}, all l p → all (erase a l) p
|
||
| [] h := by rewrite [erase_nil]; exact h
|
||
| (b::l) h :=
|
||
assert h₁ : all l p, from all_of_all_cons h,
|
||
have h₂ : all (erase a l) p, from all_erase_of_all h₁,
|
||
have pb : p b, from of_all_cons h,
|
||
assert h₃ : all (b :: erase a l) p, from all_cons_of_all pb h₂,
|
||
by_cases
|
||
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact h₁)
|
||
(λ aneb : a ≠ b, by rewrite [erase_cons_tail _ aneb]; exact h₃)
|
||
end erase
|
||
|
||
/- disjoint -/
|
||
section disjoint
|
||
variable {A : Type}
|
||
|
||
definition disjoint (l₁ l₂ : list A) : Prop := ∀ ⦃a⦄, (a ∈ l₁ → a ∈ l₂ → false)
|
||
|
||
lemma disjoint_left {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₁ → a ∉ l₂ :=
|
||
λ d a, d a
|
||
|
||
lemma disjoint_right {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₂ → a ∉ l₁ :=
|
||
λ d a i₂ i₁, d a i₁ i₂
|
||
|
||
lemma disjoint.comm {l₁ l₂ : list A} : disjoint l₁ l₂ → disjoint l₂ l₁ :=
|
||
λ d a i₂ i₁, d a i₁ i₂
|
||
|
||
lemma disjoint_of_disjoint_cons_left {a : A} {l₁ l₂} : disjoint (a::l₁) l₂ → disjoint l₁ l₂ :=
|
||
λ d x xinl₁, disjoint_left d (or.inr xinl₁)
|
||
|
||
lemma disjoint_of_disjoint_cons_right {a : A} {l₁ l₂} : disjoint l₁ (a::l₂) → disjoint l₁ l₂ :=
|
||
λ d, disjoint.comm (disjoint_of_disjoint_cons_left (disjoint.comm d))
|
||
|
||
lemma disjoint_nil_left (l : list A) : disjoint [] l :=
|
||
λ a ab, absurd ab !not_mem_nil
|
||
|
||
lemma disjoint_nil_right (l : list A) : disjoint l [] :=
|
||
disjoint.comm (disjoint_nil_left l)
|
||
|
||
lemma disjoint_cons_of_not_mem_of_disjoint {a : A} {l₁ l₂} : a ∉ l₂ → disjoint l₁ l₂ → disjoint (a::l₁) l₂ :=
|
||
λ nainl₂ d x (xinal₁ : x ∈ a::l₁),
|
||
or.elim (eq_or_mem_of_mem_cons xinal₁)
|
||
(λ xeqa : x = a, xeqa⁻¹ ▸ nainl₂)
|
||
(λ xinl₁ : x ∈ l₁, disjoint_left d xinl₁)
|
||
|
||
lemma disjoint_of_disjoint_append_left_left : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₁ l
|
||
| [] l₂ l d := disjoint_nil_left l
|
||
| (x::xs) l₂ l d :=
|
||
have nxinl : x ∉ l, from disjoint_left d !mem_cons,
|
||
have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d,
|
||
have d₂ : disjoint xs l, from disjoint_of_disjoint_append_left_left d₁,
|
||
disjoint_cons_of_not_mem_of_disjoint nxinl d₂
|
||
|
||
lemma disjoint_of_disjoint_append_left_right : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₂ l
|
||
| [] l₂ l d := d
|
||
| (x::xs) l₂ l d :=
|
||
have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d,
|
||
disjoint_of_disjoint_append_left_right d₁
|
||
|
||
lemma disjoint_of_disjoint_append_right_left : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₁ :=
|
||
λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_left (disjoint.comm d))
|
||
|
||
lemma disjoint_of_disjoint_append_right_right : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₂ :=
|
||
λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_right (disjoint.comm d))
|
||
|
||
end disjoint
|
||
|
||
/- no duplicates predicate -/
|
||
|
||
inductive nodup {A : Type} : list A → Prop :=
|
||
| ndnil : nodup []
|
||
| ndcons : ∀ {a l}, a ∉ l → nodup l → nodup (a::l)
|
||
|
||
section nodup
|
||
open nodup
|
||
variables {A B : Type}
|
||
|
||
theorem nodup_nil : @nodup A [] :=
|
||
ndnil
|
||
|
||
theorem nodup_cons {a : A} {l : list A} : a ∉ l → nodup l → nodup (a::l) :=
|
||
λ i n, ndcons i n
|
||
|
||
theorem nodup_singleton (a : A) : nodup [a] :=
|
||
nodup_cons !not_mem_nil nodup_nil
|
||
|
||
theorem nodup_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → nodup l
|
||
| a xs (ndcons i n) := n
|
||
|
||
theorem not_mem_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → a ∉ l
|
||
| a xs (ndcons i n) := i
|
||
|
||
theorem not_nodup_cons_of_mem {a : A} {l : list A} : a ∈ l → ¬ nodup (a :: l) :=
|
||
λ ainl d, absurd ainl (not_mem_of_nodup_cons d)
|
||
|
||
theorem not_nodup_cons_of_not_nodup {a : A} {l : list A} : ¬ nodup l → ¬ nodup (a :: l) :=
|
||
λ nd d, absurd (nodup_of_nodup_cons d) nd
|
||
|
||
theorem nodup_of_nodup_append_left : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₁
|
||
| [] l₂ n := nodup_nil
|
||
| (x::xs) l₂ n :=
|
||
have ndxs : nodup xs, from nodup_of_nodup_append_left (nodup_of_nodup_cons n),
|
||
have nxinxsl₂ : x ∉ xs++l₂, from not_mem_of_nodup_cons n,
|
||
have nxinxs : x ∉ xs, from not_mem_of_not_mem_append_left nxinxsl₂,
|
||
nodup_cons nxinxs ndxs
|
||
|
||
theorem nodup_of_nodup_append_right : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₂
|
||
| [] l₂ n := n
|
||
| (x::xs) l₂ n := nodup_of_nodup_append_right (nodup_of_nodup_cons n)
|
||
|
||
theorem disjoint_of_nodup_append : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → disjoint l₁ l₂
|
||
| [] l₂ d := disjoint_nil_left l₂
|
||
| (x::xs) l₂ d :=
|
||
have nodup (x::(xs++l₂)), from d,
|
||
have x ∉ xs++l₂, from not_mem_of_nodup_cons this,
|
||
have nxinl₂ : x ∉ l₂, from not_mem_of_not_mem_append_right this,
|
||
take a, suppose a ∈ x::xs,
|
||
or.elim (eq_or_mem_of_mem_cons this)
|
||
(suppose a = x, this⁻¹ ▸ nxinl₂)
|
||
(suppose ainxs : a ∈ xs,
|
||
have nodup (x::(xs++l₂)), from d,
|
||
have nodup (xs++l₂), from nodup_of_nodup_cons this,
|
||
have disjoint xs l₂, from disjoint_of_nodup_append this,
|
||
disjoint_left this ainxs)
|
||
|
||
theorem nodup_append_of_nodup_of_nodup_of_disjoint : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → disjoint l₁ l₂ → nodup (l₁++l₂)
|
||
| [] l₂ d₁ d₂ dsj := by rewrite [append_nil_left]; exact d₂
|
||
| (x::xs) l₂ d₁ d₂ dsj :=
|
||
have ndxs : nodup xs, from nodup_of_nodup_cons d₁,
|
||
have disjoint xs l₂, from disjoint_of_disjoint_cons_left dsj,
|
||
have ndxsl₂ : nodup (xs++l₂), from nodup_append_of_nodup_of_nodup_of_disjoint ndxs d₂ this,
|
||
have nxinxs : x ∉ xs, from not_mem_of_nodup_cons d₁,
|
||
have x ∉ l₂, from disjoint_left dsj !mem_cons,
|
||
have x ∉ xs++l₂, from not_mem_append nxinxs this,
|
||
nodup_cons this ndxsl₂
|
||
|
||
theorem nodup_app_comm {l₁ l₂ : list A} (d : nodup (l₁++l₂)) : nodup (l₂++l₁) :=
|
||
have d₁ : nodup l₁, from nodup_of_nodup_append_left d,
|
||
have d₂ : nodup l₂, from nodup_of_nodup_append_right d,
|
||
have dsj : disjoint l₁ l₂, from disjoint_of_nodup_append d,
|
||
nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₁ (disjoint.comm dsj)
|
||
|
||
theorem nodup_head {a : A} {l₁ l₂ : list A} (d : nodup (l₁++(a::l₂))) : nodup (a::(l₁++l₂)) :=
|
||
have d₁ : nodup (a::(l₂++l₁)), from nodup_app_comm d,
|
||
have d₂ : nodup (l₂++l₁), from nodup_of_nodup_cons d₁,
|
||
have d₃ : nodup (l₁++l₂), from nodup_app_comm d₂,
|
||
have nain : a ∉ l₂++l₁, from not_mem_of_nodup_cons d₁,
|
||
have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_left nain,
|
||
have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_right nain,
|
||
nodup_cons (not_mem_append nain₁ nain₂) d₃
|
||
|
||
theorem nodup_middle {a : A} {l₁ l₂ : list A} (d : nodup (a::(l₁++l₂))) : nodup (l₁++(a::l₂)) :=
|
||
have d₁ : nodup (l₁++l₂), from nodup_of_nodup_cons d,
|
||
have nain : a ∉ l₁++l₂, from not_mem_of_nodup_cons d,
|
||
have disj : disjoint l₁ l₂, from disjoint_of_nodup_append d₁,
|
||
have d₂ : nodup l₁, from nodup_of_nodup_append_left d₁,
|
||
have d₃ : nodup l₂, from nodup_of_nodup_append_right d₁,
|
||
have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_right nain,
|
||
have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_left nain,
|
||
have d₄ : nodup (a::l₂), from nodup_cons nain₂ d₃,
|
||
have disj₂ : disjoint l₁ (a::l₂), from disjoint.comm (disjoint_cons_of_not_mem_of_disjoint nain₁ (disjoint.comm disj)),
|
||
nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₄ disj₂
|
||
|
||
theorem nodup_map {f : A → B} (inj : injective f) : ∀ {l : list A}, nodup l → nodup (map f l)
|
||
| [] n := begin rewrite [map_nil], apply nodup_nil end
|
||
| (x::xs) n :=
|
||
assert nxinxs : x ∉ xs, from not_mem_of_nodup_cons n,
|
||
assert ndxs : nodup xs, from nodup_of_nodup_cons n,
|
||
assert ndmfxs : nodup (map f xs), from nodup_map ndxs,
|
||
assert nfxinm : f x ∉ map f xs, from
|
||
λ ab : f x ∈ map f xs,
|
||
obtain (y : A) (yinxs : y ∈ xs) (fyfx : f y = f x), from exists_of_mem_map ab,
|
||
assert yeqx : y = x, from inj fyfx,
|
||
by subst y; contradiction,
|
||
nodup_cons nfxinm ndmfxs
|
||
|
||
theorem nodup_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → nodup (erase a l)
|
||
| [] n := nodup_nil
|
||
| (b::l) n := by_cases
|
||
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact (nodup_of_nodup_cons n))
|
||
(λ aneb : a ≠ b,
|
||
have nbinl : b ∉ l, from not_mem_of_nodup_cons n,
|
||
have ndl : nodup l, from nodup_of_nodup_cons n,
|
||
have ndeal : nodup (erase a l), from nodup_erase_of_nodup ndl,
|
||
have nbineal : b ∉ erase a l, from λ i, absurd (erase_sub _ _ i) nbinl,
|
||
assert aux : nodup (b :: erase a l), from nodup_cons nbineal ndeal,
|
||
by rewrite [erase_cons_tail _ aneb]; exact aux)
|
||
|
||
theorem mem_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → a ∉ erase a l
|
||
| [] n := !not_mem_nil
|
||
| (b::l) n :=
|
||
have ndl : nodup l, from nodup_of_nodup_cons n,
|
||
have naineal : a ∉ erase a l, from mem_erase_of_nodup ndl,
|
||
assert nbinl : b ∉ l, from not_mem_of_nodup_cons n,
|
||
by_cases
|
||
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact nbinl)
|
||
(λ aneb : a ≠ b,
|
||
assert aux : a ∉ b :: erase a l, from
|
||
assume ainbeal : a ∈ b :: erase a l, or.elim (eq_or_mem_of_mem_cons ainbeal)
|
||
(λ aeqb : a = b, absurd aeqb aneb)
|
||
(λ aineal : a ∈ erase a l, absurd aineal naineal),
|
||
by rewrite [erase_cons_tail _ aneb]; exact aux)
|
||
|
||
definition erase_dup [H : decidable_eq A] : list A → list A
|
||
| [] := []
|
||
| (x :: xs) := if x ∈ xs then erase_dup xs else x :: erase_dup xs
|
||
|
||
theorem erase_dup_nil [H : decidable_eq A] : erase_dup [] = ([] : list A)
|
||
|
||
theorem erase_dup_cons_of_mem [H : decidable_eq A] {a : A} {l : list A} : a ∈ l → erase_dup (a::l) = erase_dup l :=
|
||
assume ainl, calc
|
||
erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl
|
||
... = erase_dup l : if_pos ainl
|
||
|
||
theorem erase_dup_cons_of_not_mem [H : decidable_eq A] {a : A} {l : list A} : a ∉ l → erase_dup (a::l) = a :: erase_dup l :=
|
||
assume nainl, calc
|
||
erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl
|
||
... = a :: erase_dup l : if_neg nainl
|
||
|
||
theorem mem_erase_dup [H : decidable_eq A] {a : A} : ∀ {l}, a ∈ l → a ∈ erase_dup l
|
||
| [] h := absurd h !not_mem_nil
|
||
| (b::l) h := by_cases
|
||
(λ binl : b ∈ l, or.elim (eq_or_mem_of_mem_cons h)
|
||
(λ aeqb : a = b, by rewrite [erase_dup_cons_of_mem binl, -aeqb at binl]; exact (mem_erase_dup binl))
|
||
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem binl]; exact (mem_erase_dup ainl)))
|
||
(λ nbinl : b ∉ l, or.elim (eq_or_mem_of_mem_cons h)
|
||
(λ aeqb : a = b, by rewrite [erase_dup_cons_of_not_mem nbinl, aeqb]; exact !mem_cons)
|
||
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_not_mem nbinl]; exact (or.inr (mem_erase_dup ainl))))
|
||
|
||
theorem mem_of_mem_erase_dup [H : decidable_eq A] {a : A} : ∀ {l}, a ∈ erase_dup l → a ∈ l
|
||
| [] h := by rewrite [erase_dup_nil at h]; exact h
|
||
| (b::l) h := by_cases
|
||
(λ binl : b ∈ l,
|
||
have h₁ : a ∈ erase_dup l, by rewrite [erase_dup_cons_of_mem binl at h]; exact h,
|
||
or.inr (mem_of_mem_erase_dup h₁))
|
||
(λ nbinl : b ∉ l,
|
||
have h₁ : a ∈ b :: erase_dup l, by rewrite [erase_dup_cons_of_not_mem nbinl at h]; exact h,
|
||
or.elim (eq_or_mem_of_mem_cons h₁)
|
||
(λ aeqb : a = b, by rewrite aeqb; exact !mem_cons)
|
||
(λ ainel : a ∈ erase_dup l, or.inr (mem_of_mem_erase_dup ainel)))
|
||
|
||
theorem erase_dup_sub [H : decidable_eq A] (l : list A) : erase_dup l ⊆ l :=
|
||
λ a i, mem_of_mem_erase_dup i
|
||
|
||
theorem sub_erase_dup [H : decidable_eq A] (l : list A) : l ⊆ erase_dup l :=
|
||
λ a i, mem_erase_dup i
|
||
|
||
theorem nodup_erase_dup [H : decidable_eq A] : ∀ l : list A, nodup (erase_dup l)
|
||
| [] := by rewrite erase_dup_nil; exact nodup_nil
|
||
| (a::l) := by_cases
|
||
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem ainl]; exact (nodup_erase_dup l))
|
||
(λ nainl : a ∉ l,
|
||
assert r : nodup (erase_dup l), from nodup_erase_dup l,
|
||
assert nin : a ∉ erase_dup l, from
|
||
assume ab : a ∈ erase_dup l, absurd (mem_of_mem_erase_dup ab) nainl,
|
||
by rewrite [erase_dup_cons_of_not_mem nainl]; exact (nodup_cons nin r))
|
||
|
||
theorem erase_dup_eq_of_nodup [H : decidable_eq A] : ∀ {l : list A}, nodup l → erase_dup l = l
|
||
| [] d := rfl
|
||
| (a::l) d :=
|
||
assert nainl : a ∉ l, from not_mem_of_nodup_cons d,
|
||
assert dl : nodup l, from nodup_of_nodup_cons d,
|
||
by rewrite [erase_dup_cons_of_not_mem nainl, erase_dup_eq_of_nodup dl]
|
||
|
||
definition decidable_nodup [instance] [h : decidable_eq A] : ∀ (l : list A), decidable (nodup l)
|
||
| [] := inl nodup_nil
|
||
| (a::l) :=
|
||
match decidable_mem a l with
|
||
| inl p := inr (not_nodup_cons_of_mem p)
|
||
| inr n :=
|
||
match decidable_nodup l with
|
||
| inl nd := inl (nodup_cons n nd)
|
||
| inr d := inr (not_nodup_cons_of_not_nodup d)
|
||
end
|
||
end
|
||
|
||
theorem nodup_product : ∀ {l₁ : list A} {l₂ : list B}, nodup l₁ → nodup l₂ → nodup (product l₁ l₂)
|
||
| [] l₂ n₁ n₂ := nodup_nil
|
||
| (a::l₁) l₂ n₁ n₂ :=
|
||
have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons n₁,
|
||
have n₃ : nodup l₁, from nodup_of_nodup_cons n₁,
|
||
have n₄ : nodup (product l₁ l₂), from nodup_product n₃ n₂,
|
||
have dgen : ∀ l, nodup l → nodup (map (λ b, (a, b)) l)
|
||
| [] h := nodup_nil
|
||
| (x::l) h :=
|
||
have dl : nodup l, from nodup_of_nodup_cons h,
|
||
have dm : nodup (map (λ b, (a, b)) l), from dgen l dl,
|
||
have nxin : x ∉ l, from not_mem_of_nodup_cons h,
|
||
have npin : (a, x) ∉ map (λ b, (a, b)) l, from
|
||
assume pin, absurd (mem_of_mem_map_pair₁ pin) nxin,
|
||
nodup_cons npin dm,
|
||
have dm : nodup (map (λ b, (a, b)) l₂), from dgen l₂ n₂,
|
||
have dsj : disjoint (map (λ b, (a, b)) l₂) (product l₁ l₂), from
|
||
λ p, match p with
|
||
| (a₁, b₁) :=
|
||
λ (i₁ : (a₁, b₁) ∈ map (λ b, (a, b)) l₂) (i₂ : (a₁, b₁) ∈ product l₁ l₂),
|
||
have a₁inl₁ : a₁ ∈ l₁, from mem_of_mem_product_left i₂,
|
||
have a₁eqa : a₁ = a, from eq_of_mem_map_pair₁ i₁,
|
||
absurd (a₁eqa ▸ a₁inl₁) nainl₁
|
||
end,
|
||
nodup_append_of_nodup_of_nodup_of_disjoint dm n₄ dsj
|
||
|
||
theorem nodup_filter (p : A → Prop) [h : decidable_pred p] : ∀ {l : list A}, nodup l → nodup (filter p l)
|
||
| [] nd := nodup_nil
|
||
| (a::l) nd :=
|
||
have nainl : a ∉ l, from not_mem_of_nodup_cons nd,
|
||
have ndl : nodup l, from nodup_of_nodup_cons nd,
|
||
assert ndf : nodup (filter p l), from nodup_filter ndl,
|
||
assert nainf : a ∉ filter p l, from
|
||
assume ainf, absurd (mem_of_mem_filter ainf) nainl,
|
||
by_cases
|
||
(λ pa : p a, by rewrite [filter_cons_of_pos _ pa]; exact (nodup_cons nainf ndf))
|
||
(λ npa : ¬ p a, by rewrite [filter_cons_of_neg _ npa]; exact ndf)
|
||
|
||
lemma dmap_nodup_of_dinj {p : A → Prop} [h : decidable_pred p] {f : Π a, p a → B} (Pdi : dinj p f):
|
||
∀ {l : list A}, nodup l → nodup (dmap p f l)
|
||
| [] := take P, nodup.ndnil
|
||
| (a::l) := take Pnodup,
|
||
decidable.rec_on (h a)
|
||
(λ Pa,
|
||
begin
|
||
rewrite [dmap_cons_of_pos Pa],
|
||
apply nodup_cons,
|
||
apply (not_mem_dmap_of_dinj_of_not_mem Pdi Pa),
|
||
exact not_mem_of_nodup_cons Pnodup,
|
||
exact dmap_nodup_of_dinj (nodup_of_nodup_cons Pnodup)
|
||
end)
|
||
(λ nPa,
|
||
begin
|
||
rewrite [dmap_cons_of_neg nPa],
|
||
exact dmap_nodup_of_dinj (nodup_of_nodup_cons Pnodup)
|
||
end)
|
||
|
||
end nodup
|
||
|
||
/- upto -/
|
||
definition upto : nat → list nat
|
||
| 0 := []
|
||
| (n+1) := n :: upto n
|
||
|
||
theorem upto_nil : upto 0 = nil
|
||
|
||
theorem upto_succ (n : nat) : upto (succ n) = n :: upto n
|
||
|
||
theorem length_upto : ∀ n, length (upto n) = n
|
||
| 0 := rfl
|
||
| (succ n) := by rewrite [upto_succ, length_cons, length_upto]
|
||
|
||
theorem upto_less : ∀ n, all (upto n) (λ i, i < n)
|
||
| 0 := trivial
|
||
| (succ n) :=
|
||
have alln : all (upto n) (λ i, i < n), from upto_less n,
|
||
all_cons_of_all (lt.base n) (all_implies alln (λ x h, lt.step h))
|
||
|
||
theorem nodup_upto : ∀ n, nodup (upto n)
|
||
| 0 := nodup_nil
|
||
| (n+1) :=
|
||
have d : nodup (upto n), from nodup_upto n,
|
||
have n : n ∉ upto n, from
|
||
assume i : n ∈ upto n, absurd (of_mem_of_all i (upto_less n)) (nat.lt_irrefl n),
|
||
nodup_cons n d
|
||
|
||
theorem lt_of_mem_upto {n i : nat} : i ∈ upto n → i < n :=
|
||
assume i, of_mem_of_all i (upto_less n)
|
||
|
||
theorem mem_upto_succ_of_mem_upto {n i : nat} : i ∈ upto n → i ∈ upto (succ n) :=
|
||
assume i, mem_cons_of_mem _ i
|
||
|
||
theorem mem_upto_of_lt : ∀ {n i : nat}, i < n → i ∈ upto n
|
||
| 0 i h := absurd h !not_lt_zero
|
||
| (succ n) i h :=
|
||
begin
|
||
cases h with m h',
|
||
{ rewrite upto_succ, apply mem_cons},
|
||
{ exact mem_upto_succ_of_mem_upto (mem_upto_of_lt h')}
|
||
end
|
||
|
||
lemma upto_step : ∀ {n : nat}, upto (succ n) = (map succ (upto n))++[0]
|
||
| 0 := rfl
|
||
| (succ n) := begin rewrite [upto_succ n, map_cons, append_cons, -upto_step] end
|
||
|
||
/- union -/
|
||
section union
|
||
variable {A : Type}
|
||
variable [H : decidable_eq A]
|
||
include H
|
||
|
||
definition union : list A → list A → list A
|
||
| [] l₂ := l₂
|
||
| (a::l₁) l₂ := if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂
|
||
|
||
theorem nil_union (l : list A) : union [] l = l
|
||
|
||
theorem union_cons_of_mem {a : A} {l₂} : ∀ (l₁), a ∈ l₂ → union (a::l₁) l₂ = union l₁ l₂ :=
|
||
take l₁, assume ainl₂, calc
|
||
union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl
|
||
... = union l₁ l₂ : if_pos ainl₂
|
||
|
||
theorem union_cons_of_not_mem {a : A} {l₂} : ∀ (l₁), a ∉ l₂ → union (a::l₁) l₂ = a :: union l₁ l₂ :=
|
||
take l₁, assume nainl₂, calc
|
||
union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl
|
||
... = a :: union l₁ l₂ : if_neg nainl₂
|
||
|
||
theorem union_nil : ∀ (l : list A), union l [] = l
|
||
| [] := !nil_union
|
||
| (a::l) := by rewrite [union_cons_of_not_mem _ !not_mem_nil, union_nil]
|
||
|
||
theorem mem_or_mem_of_mem_union : ∀ {l₁ l₂} {a : A}, a ∈ union l₁ l₂ → a ∈ l₁ ∨ a ∈ l₂
|
||
| [] l₂ a ainl₂ := by rewrite nil_union at ainl₂; exact (or.inr (ainl₂))
|
||
| (b::l₁) l₂ a ainbl₁l₂ := by_cases
|
||
(λ binl₂ : b ∈ l₂,
|
||
have ainl₁l₂ : a ∈ union l₁ l₂, by rewrite [union_cons_of_mem l₁ binl₂ at ainbl₁l₂]; exact ainbl₁l₂,
|
||
or.elim (mem_or_mem_of_mem_union ainl₁l₂)
|
||
(λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁))
|
||
(λ ainl₂, or.inr ainl₂))
|
||
(λ nbinl₂ : b ∉ l₂,
|
||
have ainb_l₁l₂ : a ∈ b :: union l₁ l₂, by rewrite [union_cons_of_not_mem l₁ nbinl₂ at ainbl₁l₂]; exact ainbl₁l₂,
|
||
or.elim (eq_or_mem_of_mem_cons ainb_l₁l₂)
|
||
(λ aeqb, by rewrite aeqb; exact (or.inl !mem_cons))
|
||
(λ ainl₁l₂,
|
||
or.elim (mem_or_mem_of_mem_union ainl₁l₂)
|
||
(λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁))
|
||
(λ ainl₂, or.inr ainl₂)))
|
||
|
||
theorem mem_union_right {a : A} : ∀ (l₁) {l₂}, a ∈ l₂ → a ∈ union l₁ l₂
|
||
| [] l₂ h := by rewrite nil_union; exact h
|
||
| (b::l₁) l₂ h := by_cases
|
||
(λ binl₂ : b ∈ l₂, by rewrite [union_cons_of_mem _ binl₂]; exact (mem_union_right _ h))
|
||
(λ nbinl₂ : b ∉ l₂, by rewrite [union_cons_of_not_mem _ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_right _ h)))
|
||
|
||
theorem mem_union_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → a ∈ union l₁ l₂
|
||
| [] l₂ h := absurd h !not_mem_nil
|
||
| (b::l₁) l₂ h := by_cases
|
||
(λ binl₂ : b ∈ l₂, or.elim (eq_or_mem_of_mem_cons h)
|
||
(λ aeqb : a = b,
|
||
by rewrite [union_cons_of_mem l₁ binl₂, -aeqb at binl₂]; exact (mem_union_right _ binl₂))
|
||
(λ ainl₁ : a ∈ l₁,
|
||
by rewrite [union_cons_of_mem l₁ binl₂]; exact (mem_union_left _ ainl₁)))
|
||
(λ nbinl₂ : b ∉ l₂, or.elim (eq_or_mem_of_mem_cons h)
|
||
(λ aeqb : a = b,
|
||
by rewrite [union_cons_of_not_mem l₁ nbinl₂, aeqb]; exact !mem_cons)
|
||
(λ ainl₁ : a ∈ l₁,
|
||
by rewrite [union_cons_of_not_mem l₁ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_left _ ainl₁))))
|
||
|
||
theorem mem_union_cons (a : A) (l₁ : list A) (l₂ : list A) : a ∈ union (a::l₁) l₂ :=
|
||
by_cases
|
||
(λ ainl₂ : a ∈ l₂, mem_union_right _ ainl₂)
|
||
(λ nainl₂ : a ∉ l₂, by rewrite [union_cons_of_not_mem _ nainl₂]; exact !mem_cons)
|
||
|
||
theorem nodup_union_of_nodup_of_nodup : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → nodup (union l₁ l₂)
|
||
| [] l₂ n₁ nl₂ := by rewrite nil_union; exact nl₂
|
||
| (a::l₁) l₂ nal₁ nl₂ :=
|
||
assert nl₁ : nodup l₁, from nodup_of_nodup_cons nal₁,
|
||
assert nl₁l₂ : nodup (union l₁ l₂), from nodup_union_of_nodup_of_nodup nl₁ nl₂,
|
||
by_cases
|
||
(λ ainl₂ : a ∈ l₂,
|
||
by rewrite [union_cons_of_mem l₁ ainl₂]; exact nl₁l₂)
|
||
(λ nainl₂ : a ∉ l₂,
|
||
have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons nal₁,
|
||
assert nainl₁l₂ : a ∉ union l₁ l₂, from
|
||
assume ainl₁l₂ : a ∈ union l₁ l₂, or.elim (mem_or_mem_of_mem_union ainl₁l₂)
|
||
(λ ainl₁, absurd ainl₁ nainl₁)
|
||
(λ ainl₂, absurd ainl₂ nainl₂),
|
||
by rewrite [union_cons_of_not_mem l₁ nainl₂]; exact (nodup_cons nainl₁l₂ nl₁l₂))
|
||
|
||
theorem union_eq_append : ∀ {l₁ l₂ : list A}, disjoint l₁ l₂ → union l₁ l₂ = append l₁ l₂
|
||
| [] l₂ d := rfl
|
||
| (a::l₁) l₂ d :=
|
||
assert nainl₂ : a ∉ l₂, from disjoint_left d !mem_cons,
|
||
assert d₁ : disjoint l₁ l₂, from disjoint_of_disjoint_cons_left d,
|
||
by rewrite [union_cons_of_not_mem _ nainl₂, append_cons, union_eq_append d₁]
|
||
|
||
theorem all_union {p : A → Prop} : ∀ {l₁ l₂ : list A}, all l₁ p → all l₂ p → all (union l₁ l₂) p
|
||
| [] l₂ h₁ h₂ := h₂
|
||
| (a::l₁) l₂ h₁ h₂ :=
|
||
have h₁' : all l₁ p, from all_of_all_cons h₁,
|
||
have pa : p a, from of_all_cons h₁,
|
||
assert au : all (union l₁ l₂) p, from all_union h₁' h₂,
|
||
assert au' : all (a :: union l₁ l₂) p, from all_cons_of_all pa au,
|
||
by_cases
|
||
(λ ainl₂ : a ∈ l₂, by rewrite [union_cons_of_mem _ ainl₂]; exact au)
|
||
(λ nainl₂ : a ∉ l₂, by rewrite [union_cons_of_not_mem _ nainl₂]; exact au')
|
||
|
||
theorem all_of_all_union_left {p : A → Prop} : ∀ {l₁ l₂ : list A}, all (union l₁ l₂) p → all l₁ p
|
||
| [] l₂ h := trivial
|
||
| (a::l₁) l₂ h :=
|
||
have ain : a ∈ union (a::l₁) l₂, from !mem_union_cons,
|
||
have pa : p a, from of_mem_of_all ain h,
|
||
by_cases
|
||
(λ ainl₂ : a ∈ l₂,
|
||
have al₁l₂ : all (union l₁ l₂) p, by rewrite [union_cons_of_mem _ ainl₂ at h]; exact h,
|
||
have al₁ : all l₁ p, from all_of_all_union_left al₁l₂,
|
||
all_cons_of_all pa al₁)
|
||
(λ nainl₂ : a ∉ l₂,
|
||
have aal₁l₂ : all (a::union l₁ l₂) p, by rewrite [union_cons_of_not_mem _ nainl₂ at h]; exact h,
|
||
have al₁l₂ : all (union l₁ l₂) p, from all_of_all_cons aal₁l₂,
|
||
have al₁ : all l₁ p, from all_of_all_union_left al₁l₂,
|
||
all_cons_of_all pa al₁)
|
||
|
||
theorem all_of_all_union_right {p : A → Prop} : ∀ {l₁ l₂ : list A}, all (union l₁ l₂) p → all l₂ p
|
||
| [] l₂ h := by rewrite [nil_union at h]; exact h
|
||
| (a::l₁) l₂ h := by_cases
|
||
(λ ainl₂ : a ∈ l₂, by rewrite [union_cons_of_mem _ ainl₂ at h]; exact (all_of_all_union_right h))
|
||
(λ nainl₂ : a ∉ l₂,
|
||
have h₁ : all (a :: union l₁ l₂) p, by rewrite [union_cons_of_not_mem _ nainl₂ at h]; exact h,
|
||
all_of_all_union_right (all_of_all_cons h₁))
|
||
|
||
variable {B : Type}
|
||
theorem foldl_union_of_disjoint (f : B → A → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂)
|
||
: foldl f b (union l₁ l₂) = foldl f (foldl f b l₁) l₂ :=
|
||
by rewrite [union_eq_append d, foldl_append]
|
||
|
||
theorem foldr_union_of_dijoint (f : A → B → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂)
|
||
: foldr f b (union l₁ l₂) = foldr f (foldr f b l₂) l₁ :=
|
||
by rewrite [union_eq_append d, foldr_append]
|
||
end union
|
||
|
||
/- insert -/
|
||
section insert
|
||
variable {A : Type}
|
||
variable [H : decidable_eq A]
|
||
include H
|
||
|
||
definition insert (a : A) (l : list A) : list A :=
|
||
if a ∈ l then l else a::l
|
||
|
||
theorem insert_eq_of_mem {a : A} {l : list A} : a ∈ l → insert a l = l :=
|
||
assume ainl, if_pos ainl
|
||
|
||
theorem insert_eq_of_not_mem {a : A} {l : list A} : a ∉ l → insert a l = a::l :=
|
||
assume nainl, if_neg nainl
|
||
|
||
theorem mem_insert (a : A) (l : list A) : a ∈ insert a l :=
|
||
by_cases
|
||
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact ainl)
|
||
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact !mem_cons)
|
||
|
||
theorem mem_insert_of_mem {a : A} (b : A) {l : list A} : a ∈ l → a ∈ insert b l :=
|
||
assume ainl, by_cases
|
||
(λ binl : b ∈ l, by rewrite [insert_eq_of_mem binl]; exact ainl)
|
||
(λ nbinl : b ∉ l, by rewrite [insert_eq_of_not_mem nbinl]; exact (mem_cons_of_mem _ ainl))
|
||
|
||
theorem eq_or_mem_of_mem_insert {x a : A} {l : list A} (H : x ∈ insert a l) : x = a ∨ x ∈ l :=
|
||
decidable.by_cases
|
||
(assume H3: a ∈ l, or.inr (insert_eq_of_mem H3 ▸ H))
|
||
(assume H3: a ∉ l,
|
||
have H4: x ∈ a :: l, from insert_eq_of_not_mem H3 ▸ H,
|
||
iff.mp !mem_cons_iff H4)
|
||
|
||
theorem mem_insert_iff (x a : A) (l : list A) : x ∈ insert a l ↔ x = a ∨ x ∈ l :=
|
||
iff.intro
|
||
(!eq_or_mem_of_mem_insert)
|
||
(assume H, or.elim H
|
||
(assume H' : x = a, H'⁻¹ ▸ !mem_insert)
|
||
(assume H' : x ∈ l, !mem_insert_of_mem H'))
|
||
|
||
theorem nodup_insert (a : A) {l : list A} : nodup l → nodup (insert a l) :=
|
||
assume n, by_cases
|
||
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact n)
|
||
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact (nodup_cons nainl n))
|
||
|
||
theorem length_insert_of_mem {a : A} {l : list A} : a ∈ l → length (insert a l) = length l :=
|
||
assume ainl, by rewrite [insert_eq_of_mem ainl]
|
||
|
||
theorem length_insert_of_not_mem {a : A} {l : list A} : a ∉ l → length (insert a l) = length l + 1 :=
|
||
assume nainl, by rewrite [insert_eq_of_not_mem nainl]
|
||
|
||
theorem all_insert_of_all {p : A → Prop} {a : A} {l} : p a → all l p → all (insert a l) p :=
|
||
assume h₁ h₂, by_cases
|
||
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact h₂)
|
||
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact (all_cons_of_all h₁ h₂))
|
||
end insert
|
||
|
||
/- inter -/
|
||
section inter
|
||
variable {A : Type}
|
||
variable [H : decidable_eq A]
|
||
include H
|
||
|
||
definition inter : list A → list A → list A
|
||
| [] l₂ := []
|
||
| (a::l₁) l₂ := if a ∈ l₂ then a :: inter l₁ l₂ else inter l₁ l₂
|
||
|
||
theorem inter_nil (l : list A) : inter [] l = []
|
||
|
||
theorem inter_cons_of_mem {a : A} (l₁ : list A) {l₂} : a ∈ l₂ → inter (a::l₁) l₂ = a :: inter l₁ l₂ :=
|
||
assume i, if_pos i
|
||
|
||
theorem inter_cons_of_not_mem {a : A} (l₁ : list A) {l₂} : a ∉ l₂ → inter (a::l₁) l₂ = inter l₁ l₂ :=
|
||
assume i, if_neg i
|
||
|
||
theorem mem_of_mem_inter_left : ∀ {l₁ l₂} {a : A}, a ∈ inter l₁ l₂ → a ∈ l₁
|
||
| [] l₂ a i := absurd i !not_mem_nil
|
||
| (b::l₁) l₂ a i := by_cases
|
||
(λ binl₂ : b ∈ l₂,
|
||
have aux : a ∈ b :: inter l₁ l₂, by rewrite [inter_cons_of_mem _ binl₂ at i]; exact i,
|
||
or.elim (eq_or_mem_of_mem_cons aux)
|
||
(λ aeqb : a = b, by rewrite [aeqb]; exact !mem_cons)
|
||
(λ aini, mem_cons_of_mem _ (mem_of_mem_inter_left aini)))
|
||
(λ nbinl₂ : b ∉ l₂,
|
||
have ainl₁ : a ∈ l₁, by rewrite [inter_cons_of_not_mem _ nbinl₂ at i]; exact (mem_of_mem_inter_left i),
|
||
mem_cons_of_mem _ ainl₁)
|
||
|
||
theorem mem_of_mem_inter_right : ∀ {l₁ l₂} {a : A}, a ∈ inter l₁ l₂ → a ∈ l₂
|
||
| [] l₂ a i := absurd i !not_mem_nil
|
||
| (b::l₁) l₂ a i := by_cases
|
||
(λ binl₂ : b ∈ l₂,
|
||
have aux : a ∈ b :: inter l₁ l₂, by rewrite [inter_cons_of_mem _ binl₂ at i]; exact i,
|
||
or.elim (eq_or_mem_of_mem_cons aux)
|
||
(λ aeqb : a = b, by rewrite [aeqb]; exact binl₂)
|
||
(λ aini : a ∈ inter l₁ l₂, mem_of_mem_inter_right aini))
|
||
(λ nbinl₂ : b ∉ l₂,
|
||
by rewrite [inter_cons_of_not_mem _ nbinl₂ at i]; exact (mem_of_mem_inter_right i))
|
||
|
||
theorem mem_inter_of_mem_of_mem : ∀ {l₁ l₂} {a : A}, a ∈ l₁ → a ∈ l₂ → a ∈ inter l₁ l₂
|
||
| [] l₂ a i₁ i₂ := absurd i₁ !not_mem_nil
|
||
| (b::l₁) l₂ a i₁ i₂ := by_cases
|
||
(λ binl₂ : b ∈ l₂,
|
||
or.elim (eq_or_mem_of_mem_cons i₁)
|
||
(λ aeqb : a = b,
|
||
by rewrite [inter_cons_of_mem _ binl₂, aeqb]; exact !mem_cons)
|
||
(λ ainl₁ : a ∈ l₁,
|
||
by rewrite [inter_cons_of_mem _ binl₂];
|
||
apply mem_cons_of_mem;
|
||
exact (mem_inter_of_mem_of_mem ainl₁ i₂)))
|
||
(λ nbinl₂ : b ∉ l₂,
|
||
or.elim (eq_or_mem_of_mem_cons i₁)
|
||
(λ aeqb : a = b, absurd (aeqb ▸ i₂) nbinl₂)
|
||
(λ ainl₁ : a ∈ l₁,
|
||
by rewrite [inter_cons_of_not_mem _ nbinl₂]; exact (mem_inter_of_mem_of_mem ainl₁ i₂)))
|
||
|
||
theorem nodup_inter_of_nodup : ∀ {l₁ : list A} (l₂), nodup l₁ → nodup (inter l₁ l₂)
|
||
| [] l₂ d := nodup_nil
|
||
| (a::l₁) l₂ d :=
|
||
have d₁ : nodup l₁, from nodup_of_nodup_cons d,
|
||
assert d₂ : nodup (inter l₁ l₂), from nodup_inter_of_nodup _ d₁,
|
||
have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons d,
|
||
assert naini : a ∉ inter l₁ l₂, from λ i, absurd (mem_of_mem_inter_left i) nainl₁,
|
||
by_cases
|
||
(λ ainl₂ : a ∈ l₂, by rewrite [inter_cons_of_mem _ ainl₂]; exact (nodup_cons naini d₂))
|
||
(λ nainl₂ : a ∉ l₂, by rewrite [inter_cons_of_not_mem _ nainl₂]; exact d₂)
|
||
|
||
theorem inter_eq_nil_of_disjoint : ∀ {l₁ l₂ : list A}, disjoint l₁ l₂ → inter l₁ l₂ = []
|
||
| [] l₂ d := rfl
|
||
| (a::l₁) l₂ d :=
|
||
assert aux_eq : inter l₁ l₂ = [], from inter_eq_nil_of_disjoint (disjoint_of_disjoint_cons_left d),
|
||
assert nainl₂ : a ∉ l₂, from disjoint_left d !mem_cons,
|
||
by rewrite [inter_cons_of_not_mem _ nainl₂, aux_eq]
|
||
|
||
theorem all_inter_of_all_left {p : A → Prop} : ∀ {l₁} (l₂), all l₁ p → all (inter l₁ l₂) p
|
||
| [] l₂ h := trivial
|
||
| (a::l₁) l₂ h :=
|
||
have h₁ : all l₁ p, from all_of_all_cons h,
|
||
assert h₂ : all (inter l₁ l₂) p, from all_inter_of_all_left _ h₁,
|
||
have pa : p a, from of_all_cons h,
|
||
assert h₃ : all (a :: inter l₁ l₂) p, from all_cons_of_all pa h₂,
|
||
by_cases
|
||
(λ ainl₂ : a ∈ l₂, by rewrite [inter_cons_of_mem _ ainl₂]; exact h₃)
|
||
(λ nainl₂ : a ∉ l₂, by rewrite [inter_cons_of_not_mem _ nainl₂]; exact h₂)
|
||
|
||
theorem all_inter_of_all_right {p : A → Prop} : ∀ (l₁) {l₂}, all l₂ p → all (inter l₁ l₂) p
|
||
| [] l₂ h := trivial
|
||
| (a::l₁) l₂ h :=
|
||
assert h₁ : all (inter l₁ l₂) p, from all_inter_of_all_right _ h,
|
||
by_cases
|
||
(λ ainl₂ : a ∈ l₂,
|
||
have pa : p a, from of_mem_of_all ainl₂ h,
|
||
assert h₂ : all (a :: inter l₁ l₂) p, from all_cons_of_all pa h₁,
|
||
by rewrite [inter_cons_of_mem _ ainl₂]; exact h₂)
|
||
(λ nainl₂ : a ∉ l₂, by rewrite [inter_cons_of_not_mem _ nainl₂]; exact h₁)
|
||
|
||
end inter
|
||
end list
|