844 lines
34 KiB
Text
844 lines
34 KiB
Text
/-
|
||
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jeremy Avigad, Robert Y. Lewis
|
||
|
||
Instantiates the reals as a metric space, and expresses completeness, sup, and inf in
|
||
a manner that is less constructive, but more convenient, than the way it is done in
|
||
data.real.complete.
|
||
|
||
The definitions here are noncomputable, for various reasons:
|
||
|
||
(1) We rely on the nonconstructive definition of abs.
|
||
(2) The theory of the reals uses the "some" operator e.g. to define the ceiling function.
|
||
This can't be defined constructively as an operation on the quotient, because
|
||
such a function is not continuous.
|
||
(3) We use "forall" and "exists" to say that a series converges, rather than carrying
|
||
around rates of convergence explicitly. We then use "some" whenever we need to extract
|
||
information, such as the limit.
|
||
|
||
These could be avoided in a constructive theory of analysis, but here we will not
|
||
follow that route.
|
||
-/
|
||
import .metric_space data.real.complete
|
||
open real classical algebra
|
||
noncomputable theory
|
||
|
||
namespace real
|
||
local postfix ⁻¹ := pnat.inv
|
||
/- the reals form a metric space -/
|
||
|
||
protected definition to_metric_space [instance] : metric_space ℝ :=
|
||
⦃ metric_space,
|
||
dist := λ x y, abs (x - y),
|
||
dist_self := λ x, abstract by rewrite [sub_self, abs_zero] end,
|
||
eq_of_dist_eq_zero := λ x y, algebra.eq_of_abs_sub_eq_zero,
|
||
dist_comm := abs_sub,
|
||
dist_triangle := abs_sub_le
|
||
⦄
|
||
|
||
open nat
|
||
open [classes] rat
|
||
|
||
definition converges_to_seq (X : ℕ → ℝ) (y : ℝ) : Prop :=
|
||
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) < ε
|
||
|
||
proposition converges_to_seq.intro {X : ℕ → ℝ} {y : ℝ}
|
||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) ≤ ε) :
|
||
converges_to_seq X y :=
|
||
metric_space.converges_to_seq.intro H
|
||
|
||
notation X `⟶` y `in` `ℕ` := converges_to_seq X y
|
||
|
||
definition converges_seq [class] (X : ℕ → ℝ) : Prop := ∃ y, X ⟶ y in ℕ
|
||
|
||
definition limit_seq (X : ℕ → ℝ) [H : converges_seq X] : ℝ := some H
|
||
|
||
proposition converges_to_limit_seq (X : ℕ → ℝ) [H : converges_seq X] :
|
||
(X ⟶ limit_seq X in ℕ) :=
|
||
some_spec H
|
||
|
||
proposition converges_to_seq_unique {X : ℕ → ℝ} {y₁ y₂ : ℝ}
|
||
(H₁ : X ⟶ y₁ in ℕ) (H₂ : X ⟶ y₂ in ℕ) : y₁ = y₂ :=
|
||
metric_space.converges_to_seq_unique H₁ H₂
|
||
|
||
proposition eq_limit_of_converges_to_seq {X : ℕ → ℝ} (y : ℝ) (H : X ⟶ y in ℕ) :
|
||
y = @limit_seq X (exists.intro y H) :=
|
||
converges_to_seq_unique H (@converges_to_limit_seq X (exists.intro y H))
|
||
|
||
proposition converges_to_seq_constant (y : ℝ) : (λn, y) ⟶ y in ℕ :=
|
||
metric_space.converges_to_seq_constant y
|
||
|
||
proposition converges_to_seq_offset {X : ℕ → ℝ} {y : ℝ} (k : ℕ) (H : X ⟶ y in ℕ) :
|
||
(λ n, X (n + k)) ⟶ y in ℕ :=
|
||
metric_space.converges_to_seq_offset k H
|
||
|
||
proposition converges_to_seq_offset_left {X : ℕ → ℝ} {y : ℝ} (k : ℕ) (H : X ⟶ y in ℕ) :
|
||
(λ n, X (k + n)) ⟶ y in ℕ :=
|
||
metric_space.converges_to_seq_offset_left k H
|
||
|
||
proposition converges_to_set_offset_succ {X : ℕ → ℝ} {y : ℝ} (H : X ⟶ y in ℕ) :
|
||
(λ n, X (succ n)) ⟶ y in ℕ :=
|
||
metric_space.converges_to_seq_offset_succ H
|
||
|
||
proposition converges_to_seq_of_converges_to_seq_offset
|
||
{X : ℕ → ℝ} {y : ℝ} {k : ℕ} (H : (λ n, X (n + k)) ⟶ y in ℕ) :
|
||
X ⟶ y in ℕ :=
|
||
metric_space.converges_to_seq_of_converges_to_seq_offset H
|
||
|
||
proposition converges_to_seq_of_converges_to_seq_offset_left
|
||
{X : ℕ → ℝ} {y : ℝ} {k : ℕ} (H : (λ n, X (k + n)) ⟶ y in ℕ) :
|
||
X ⟶ y in ℕ :=
|
||
metric_space.converges_to_seq_of_converges_to_seq_offset_left H
|
||
|
||
proposition converges_to_seq_of_converges_to_seq_offset_succ
|
||
{X : ℕ → ℝ} {y : ℝ} (H : (λ n, X (succ n)) ⟶ y in ℕ) :
|
||
X ⟶ y in ℕ :=
|
||
metric_space.converges_to_seq_of_converges_to_seq_offset_succ H
|
||
|
||
proposition converges_to_seq_offset_iff (X : ℕ → ℝ) (y : ℝ) (k : ℕ) :
|
||
((λ n, X (n + k)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) :=
|
||
metric_space.converges_to_seq_offset_iff X y k
|
||
|
||
proposition converges_to_seq_offset_left_iff (X : ℕ → ℝ) (y : ℝ) (k : ℕ) :
|
||
((λ n, X (k + n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) :=
|
||
metric_space.converges_to_seq_offset_left_iff X y k
|
||
|
||
proposition converges_to_seq_offset_succ_iff (X : ℕ → ℝ) (y : ℝ) :
|
||
((λ n, X (succ n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) :=
|
||
metric_space.converges_to_seq_offset_succ_iff X y
|
||
|
||
/- the completeness of the reals, "translated" from data.real.complete -/
|
||
|
||
definition cauchy (X : ℕ → ℝ) := metric_space.cauchy X
|
||
|
||
section
|
||
open pnat subtype
|
||
|
||
private definition pnat.succ (n : ℕ) : ℕ+ := tag (succ n) !succ_pos
|
||
|
||
private definition r_seq_of (X : ℕ → ℝ) : r_seq := λ n, X (elt_of n)
|
||
|
||
private lemma rate_of_cauchy_aux {X : ℕ → ℝ} (H : cauchy X) :
|
||
∀ k : ℕ+, ∃ N : ℕ+, ∀ m n : ℕ+,
|
||
m ≥ N → n ≥ N → abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹ :=
|
||
take k : ℕ+,
|
||
have H1 : (k⁻¹ > (rat.of_num 0)), from !pnat.inv_pos,
|
||
have H2 : (of_rat k⁻¹ > of_rat (rat.of_num 0)), from !of_rat_lt_of_rat_of_lt H1,
|
||
obtain (N : ℕ) (H : ∀ m n, m ≥ N → n ≥ N → abs (X m - X n) < of_rat k⁻¹), from H _ H2,
|
||
exists.intro (pnat.succ N)
|
||
(take m n : ℕ+,
|
||
assume Hm : m ≥ (pnat.succ N),
|
||
assume Hn : n ≥ (pnat.succ N),
|
||
have Hm' : elt_of m ≥ N, begin apply algebra.le.trans, apply le_succ, apply Hm end,
|
||
have Hn' : elt_of n ≥ N, begin apply algebra.le.trans, apply le_succ, apply Hn end,
|
||
show abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹, from le_of_lt (H _ _ Hm' Hn'))
|
||
|
||
private definition rate_of_cauchy {X : ℕ → ℝ} (H : cauchy X) (k : ℕ+) : ℕ+ :=
|
||
some (rate_of_cauchy_aux H k)
|
||
|
||
private lemma cauchy_with_rate_of_cauchy {X : ℕ → ℝ} (H : cauchy X) :
|
||
cauchy_with_rate (r_seq_of X) (rate_of_cauchy H) :=
|
||
take k : ℕ+,
|
||
some_spec (rate_of_cauchy_aux H k)
|
||
|
||
private lemma converges_to_with_rate_of_cauchy {X : ℕ → ℝ} (H : cauchy X) :
|
||
∃ l Nb, converges_to_with_rate (r_seq_of X) l Nb :=
|
||
begin
|
||
apply exists.intro,
|
||
apply exists.intro,
|
||
apply converges_to_with_rate_of_cauchy_with_rate,
|
||
exact cauchy_with_rate_of_cauchy H
|
||
end
|
||
|
||
theorem converges_seq_of_cauchy {X : ℕ → ℝ} (H : cauchy X) : converges_seq X :=
|
||
obtain l Nb (conv : converges_to_with_rate (r_seq_of X) l Nb),
|
||
from converges_to_with_rate_of_cauchy H,
|
||
exists.intro l
|
||
(take ε : ℝ,
|
||
suppose ε > 0,
|
||
obtain (k' : ℕ) (Hn : 1 / succ k' < ε), from archimedean_small `ε > 0`,
|
||
let k : ℕ+ := tag (succ k') !succ_pos,
|
||
N : ℕ+ := Nb k in
|
||
have Hk : real.of_rat k⁻¹ < ε,
|
||
by rewrite [↑pnat.inv, of_rat_divide]; exact Hn,
|
||
exists.intro (elt_of N)
|
||
(take n : ℕ,
|
||
assume Hn : n ≥ elt_of N,
|
||
let n' : ℕ+ := tag n (nat.lt_of_lt_of_le (has_property N) Hn) in
|
||
have abs (X n - l) ≤ real.of_rat k⁻¹, by apply conv k n' Hn,
|
||
show abs (X n - l) < ε, from lt_of_le_of_lt this Hk))
|
||
|
||
open set
|
||
|
||
private definition exists_is_sup {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
|
||
∃ y, is_sup X y :=
|
||
let x := some (and.left H), b := some (and.right H) in
|
||
exists_is_sup_of_inh_of_bdd X x (some_spec (and.left H)) b (some_spec (and.right H))
|
||
|
||
private definition sup_aux {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :=
|
||
some (exists_is_sup H)
|
||
|
||
private definition sup_aux_spec {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
|
||
is_sup X (sup_aux H) :=
|
||
some_spec (exists_is_sup H)
|
||
|
||
definition sup (X : set ℝ) : ℝ :=
|
||
if H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b) then sup_aux H else 0
|
||
|
||
proposition le_sup {x : ℝ} {X : set ℝ} (Hx : x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → x ≤ b) :
|
||
x ≤ sup X :=
|
||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
|
||
from and.intro (exists.intro x Hx) (exists.intro b Hb),
|
||
by+ rewrite [↑sup, dif_pos H]; exact and.left (sup_aux_spec H) x Hx
|
||
|
||
proposition sup_le {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → x ≤ b) :
|
||
sup X ≤ b :=
|
||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
|
||
from and.intro HX (exists.intro b Hb),
|
||
by+ rewrite [↑sup, dif_pos H]; exact and.right (sup_aux_spec H) b Hb
|
||
|
||
proposition exists_mem_and_lt_of_lt_sup {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : b < sup X) :
|
||
∃ x, x ∈ X ∧ b < x :=
|
||
have ¬ ∀ x, x ∈ X → x ≤ b, from assume H, not_le_of_gt Hb (sup_le HX H),
|
||
obtain x (Hx : ¬ (x ∈ X → x ≤ b)), from exists_not_of_not_forall this,
|
||
exists.intro x
|
||
(have x ∈ X ∧ ¬ x ≤ b, by rewrite [-not_implies_iff_and_not]; apply Hx,
|
||
and.intro (and.left this) (lt_of_not_ge (and.right this)))
|
||
|
||
private definition exists_is_inf {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :
|
||
∃ y, is_inf X y :=
|
||
let x := some (and.left H), b := some (and.right H) in
|
||
exists_is_inf_of_inh_of_bdd X x (some_spec (and.left H)) b (some_spec (and.right H))
|
||
|
||
private definition inf_aux {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :=
|
||
some (exists_is_inf H)
|
||
|
||
private definition inf_aux_spec {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :
|
||
is_inf X (inf_aux H) :=
|
||
some_spec (exists_is_inf H)
|
||
|
||
definition inf (X : set ℝ) : ℝ :=
|
||
if H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x) then inf_aux H else 0
|
||
|
||
proposition inf_le {x : ℝ} {X : set ℝ} (Hx : x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → b ≤ x) :
|
||
inf X ≤ x :=
|
||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
|
||
from and.intro (exists.intro x Hx) (exists.intro b Hb),
|
||
by+ rewrite [↑inf, dif_pos H]; exact and.left (inf_aux_spec H) x Hx
|
||
|
||
proposition le_inf {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → b ≤ x) :
|
||
b ≤ inf X :=
|
||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
|
||
from and.intro HX (exists.intro b Hb),
|
||
by+ rewrite [↑inf, dif_pos H]; exact and.right (inf_aux_spec H) b Hb
|
||
|
||
proposition exists_mem_and_lt_of_inf_lt {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : inf X < b) :
|
||
∃ x, x ∈ X ∧ x < b :=
|
||
have ¬ ∀ x, x ∈ X → b ≤ x, from assume H, not_le_of_gt Hb (le_inf HX H),
|
||
obtain x (Hx : ¬ (x ∈ X → b ≤ x)), from exists_not_of_not_forall this,
|
||
exists.intro x
|
||
(have x ∈ X ∧ ¬ b ≤ x, by rewrite [-not_implies_iff_and_not]; apply Hx,
|
||
and.intro (and.left this) (lt_of_not_ge (and.right this)))
|
||
|
||
section
|
||
local attribute mem [quasireducible]
|
||
-- TODO: is there a better place to put this?
|
||
proposition image_neg_eq (X : set ℝ) : (λ x, -x) '[X] = {x | -x ∈ X} :=
|
||
set.ext (take x, iff.intro
|
||
(assume H, obtain y [(Hy₁ : y ∈ X) (Hy₂ : -y = x)], from H,
|
||
show -x ∈ X, by rewrite [-Hy₂, neg_neg]; exact Hy₁)
|
||
(assume H : -x ∈ X, exists.intro (-x) (and.intro H !neg_neg)))
|
||
|
||
proposition sup_neg {X : set ℝ} (nonempty_X : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → b ≤ x) :
|
||
sup {x | -x ∈ X} = - inf X :=
|
||
let negX := {x | -x ∈ X} in
|
||
have nonempty_negX : ∃ x, x ∈ negX, from
|
||
obtain x Hx, from nonempty_X,
|
||
have -(-x) ∈ X,
|
||
by rewrite neg_neg; apply Hx,
|
||
exists.intro (-x) this,
|
||
have H₁ : ∀ x, x ∈ negX → x ≤ - inf X, from
|
||
take x,
|
||
assume H,
|
||
have inf X ≤ -x,
|
||
from inf_le H Hb,
|
||
show x ≤ - inf X,
|
||
from le_neg_of_le_neg this,
|
||
have H₂ : ∀ x, x ∈ X → -sup negX ≤ x, from
|
||
take x,
|
||
assume H,
|
||
have -(-x) ∈ X, by rewrite neg_neg; apply H,
|
||
have -x ≤ sup negX, from le_sup this H₁,
|
||
show -sup negX ≤ x,
|
||
from !neg_le_of_neg_le this,
|
||
eq_of_le_of_ge
|
||
(show sup negX ≤ - inf X,
|
||
from sup_le nonempty_negX H₁)
|
||
(show -inf X ≤ sup negX,
|
||
from !neg_le_of_neg_le (le_inf nonempty_X H₂))
|
||
|
||
proposition inf_neg {X : set ℝ} (nonempty_X : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → x ≤ b) :
|
||
inf {x | -x ∈ X} = - sup X :=
|
||
let negX := {x | -x ∈ X} in
|
||
have nonempty_negX : ∃ x, x ∈ negX, from
|
||
obtain x Hx, from nonempty_X,
|
||
have -(-x) ∈ X,
|
||
by rewrite neg_neg; apply Hx,
|
||
exists.intro (-x) this,
|
||
have Hb' : ∀ x, x ∈ negX → -b ≤ x,
|
||
from take x, assume H, !neg_le_of_neg_le (Hb _ H),
|
||
have HX : X = {x | -x ∈ negX},
|
||
from set.ext (take x, by rewrite [↑set_of, ↑mem, +neg_neg]),
|
||
show inf {x | -x ∈ X} = - sup X,
|
||
using HX Hb' nonempty_negX, by rewrite [HX at {2}, sup_neg nonempty_negX Hb', neg_neg]
|
||
end
|
||
end
|
||
|
||
/- limits under pointwise operations -/
|
||
|
||
section limit_operations
|
||
open nat
|
||
|
||
variables {X Y : ℕ → ℝ}
|
||
variables {x y : ℝ}
|
||
|
||
proposition add_converges_to_seq (HX : X ⟶ x in ℕ) (HY : Y ⟶ y in ℕ) :
|
||
(λ n, X n + Y n) ⟶ x + y in ℕ :=
|
||
take ε, suppose ε > 0,
|
||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → abs (X n - x) < ε / 2), from HX e2pos,
|
||
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → abs (Y n - y) < ε / 2), from HY e2pos,
|
||
let N := max N₁ N₂ in
|
||
exists.intro N
|
||
(take n,
|
||
suppose n ≥ N,
|
||
have ngtN₁ : n ≥ N₁, from nat.le_trans !le_max_left `n ≥ N`,
|
||
have ngtN₂ : n ≥ N₂, from nat.le_trans !le_max_right `n ≥ N`,
|
||
show abs ((X n + Y n) - (x + y)) < ε, from calc
|
||
abs ((X n + Y n) - (x + y))
|
||
= abs ((X n - x) + (Y n - y)) : by rewrite [sub_add_eq_sub_sub, *sub_eq_add_neg,
|
||
*add.assoc, add.left_comm (-x)]
|
||
... ≤ abs (X n - x) + abs (Y n - y) : abs_add_le_abs_add_abs
|
||
... < ε / 2 + ε / 2 : add_lt_add (HN₁ ngtN₁) (HN₂ ngtN₂)
|
||
... = ε : add_halves)
|
||
|
||
private lemma mul_left_converges_to_seq_of_pos {c : ℝ} (cnz : c ≠ 0) (HX : X ⟶ x in ℕ) :
|
||
(λ n, c * X n) ⟶ c * x in ℕ :=
|
||
take ε, suppose ε > 0,
|
||
have abscpos : abs c > 0, from abs_pos_of_ne_zero cnz,
|
||
have epos : ε / abs c > 0, from div_pos_of_pos_of_pos `ε > 0` abscpos,
|
||
obtain N (HN : ∀ {n}, n ≥ N → abs (X n - x) < ε / abs c), from HX epos,
|
||
exists.intro N
|
||
(take n,
|
||
suppose n ≥ N,
|
||
have H : abs (X n - x) < ε / abs c, from HN this,
|
||
show abs (c * X n - c * x) < ε, from calc
|
||
abs (c * X n - c * x) = abs c * abs (X n - x) : by rewrite [-mul_sub_left_distrib, abs_mul]
|
||
... < abs c * (ε / abs c) : mul_lt_mul_of_pos_left H abscpos
|
||
... = ε : mul_div_cancel' (ne_of_gt abscpos))
|
||
|
||
proposition mul_left_converges_to_seq (c : ℝ) (HX : X ⟶ x in ℕ) :
|
||
(λ n, c * X n) ⟶ c * x in ℕ :=
|
||
by_cases
|
||
(assume cz : c = 0,
|
||
have (λ n, c * X n) = (λ n, 0), from funext (take x, by rewrite [cz, zero_mul]),
|
||
by+ rewrite [this, cz, zero_mul]; apply converges_to_seq_constant)
|
||
(suppose c ≠ 0, mul_left_converges_to_seq_of_pos this HX)
|
||
|
||
proposition mul_right_converges_to_seq (c : ℝ) (HX : X ⟶ x in ℕ) :
|
||
(λ n, X n * c) ⟶ x * c in ℕ :=
|
||
have (λ n, X n * c) = (λ n, c * X n), from funext (take x, !mul.comm),
|
||
by+ rewrite [this, mul.comm]; apply mul_left_converges_to_seq c HX
|
||
|
||
-- TODO: converges_to_seq_div, converges_to_seq_mul_left_iff, etc.
|
||
|
||
proposition neg_converges_to_seq (HX : X ⟶ x in ℕ) :
|
||
(λ n, - X n) ⟶ - x in ℕ :=
|
||
take ε, suppose ε > 0,
|
||
obtain N (HN : ∀ {n}, n ≥ N → abs (X n - x) < ε), from HX this,
|
||
exists.intro N
|
||
(take n,
|
||
suppose n ≥ N,
|
||
show abs (- X n - (- x)) < ε,
|
||
by rewrite [-neg_neg_sub_neg, *neg_neg, abs_neg]; exact HN `n ≥ N`)
|
||
|
||
proposition neg_converges_to_seq_iff (X : ℕ → ℝ) :
|
||
((λ n, - X n) ⟶ - x in ℕ) ↔ (X ⟶ x in ℕ) :=
|
||
have aux : X = λ n, (- (- X n)), from funext (take n, by rewrite neg_neg),
|
||
iff.intro
|
||
(assume H : (λ n, -X n)⟶ -x in ℕ,
|
||
show X ⟶ x in ℕ, by+ rewrite [aux, -neg_neg x]; exact neg_converges_to_seq H)
|
||
neg_converges_to_seq
|
||
|
||
proposition abs_converges_to_seq_zero (HX : X ⟶ 0 in ℕ) : (λ n, abs (X n)) ⟶ 0 in ℕ :=
|
||
take ε, suppose ε > 0,
|
||
obtain N (HN : ∀ n, n ≥ N → abs (X n - 0) < ε), from HX `ε > 0`,
|
||
exists.intro N
|
||
(take n, assume Hn : n ≥ N,
|
||
have abs (X n) < ε, begin rewrite -(sub_zero (X n)), apply HN n Hn end,
|
||
show abs (abs (X n) - 0) < ε, using this,
|
||
by rewrite [sub_zero, abs_of_nonneg !abs_nonneg]; apply this)
|
||
|
||
proposition converges_to_seq_zero_of_abs_converges_to_seq_zero (HX : (λ n, abs (X n)) ⟶ 0 in ℕ) :
|
||
X ⟶ 0 in ℕ :=
|
||
take ε, suppose ε > 0,
|
||
obtain N (HN : ∀ n, n ≥ N → abs (abs (X n) - 0) < ε), from HX `ε > 0`,
|
||
exists.intro (N : ℕ)
|
||
(take n : ℕ, assume Hn : n ≥ N,
|
||
have HN' : abs (abs (X n) - 0) < ε, from HN n Hn,
|
||
have abs (X n) < ε,
|
||
by+ rewrite [sub_zero at HN', abs_of_nonneg !abs_nonneg at HN']; apply HN',
|
||
show abs (X n - 0) < ε, using this,
|
||
by rewrite sub_zero; apply this)
|
||
|
||
proposition abs_converges_to_seq_zero_iff (X : ℕ → ℝ) :
|
||
((λ n, abs (X n)) ⟶ 0 in ℕ) ↔ (X ⟶ 0 in ℕ) :=
|
||
iff.intro converges_to_seq_zero_of_abs_converges_to_seq_zero abs_converges_to_seq_zero
|
||
|
||
-- TODO: products of two sequences, converges_seq, limit_seq
|
||
|
||
end limit_operations
|
||
|
||
/- monotone sequences -/
|
||
|
||
section monotone_sequences
|
||
open nat set
|
||
|
||
variable {X : ℕ → ℝ}
|
||
|
||
definition nondecreasing (X : ℕ → ℝ) : Prop := ∀ ⦃i j⦄, i ≤ j → X i ≤ X j
|
||
|
||
proposition nondecreasing_of_forall_le_succ (H : ∀ i, X i ≤ X (succ i)) : nondecreasing X :=
|
||
take i j, suppose i ≤ j,
|
||
have ∀ n, X i ≤ X (i + n), from
|
||
take n, nat.induction_on n
|
||
(by rewrite nat.add_zero; apply le.refl)
|
||
(take n, assume ih, le.trans ih (H (i + n))),
|
||
have X i ≤ X (i + (j - i)), from !this,
|
||
by+ rewrite [add_sub_of_le `i ≤ j` at this]; exact this
|
||
|
||
proposition converges_to_seq_sup_of_nondecreasing (nondecX : nondecreasing X) {b : ℝ}
|
||
(Hb : ∀ i, X i ≤ b) : X ⟶ sup (X '[univ]) in ℕ :=
|
||
let sX := sup (X '[univ]) in
|
||
have Xle : ∀ i, X i ≤ sX, from
|
||
take i,
|
||
have ∀ x, x ∈ X '[univ] → x ≤ b, from
|
||
(take x, assume H,
|
||
obtain i [H' (Hi : X i = x)], from H,
|
||
by rewrite -Hi; exact Hb i),
|
||
show X i ≤ sX, from le_sup (mem_image_of_mem X !mem_univ) this,
|
||
have exX : ∃ x, x ∈ X '[univ],
|
||
from exists.intro (X 0) (mem_image_of_mem X !mem_univ),
|
||
take ε, assume epos : ε > 0,
|
||
have sX - ε < sX, from !sub_lt_of_pos epos,
|
||
obtain x' [(H₁x' : x' ∈ X '[univ]) (H₂x' : sX - ε < x')],
|
||
from exists_mem_and_lt_of_lt_sup exX this,
|
||
obtain i [H' (Hi : X i = x')], from H₁x',
|
||
have Hi' : ∀ j, j ≥ i → sX - ε < X j, from
|
||
take j, assume Hj, lt_of_lt_of_le (by rewrite Hi; apply H₂x') (nondecX Hj),
|
||
exists.intro i
|
||
(take j, assume Hj : j ≥ i,
|
||
have X j - sX ≤ 0, from sub_nonpos_of_le (Xle j),
|
||
have eq₁ : abs (X j - sX) = sX - X j, using this, by rewrite [abs_of_nonpos this, neg_sub],
|
||
have sX - ε < X j, from lt_of_lt_of_le (by rewrite Hi; apply H₂x') (nondecX Hj),
|
||
have sX < X j + ε, from lt_add_of_sub_lt_right this,
|
||
have sX - X j < ε, from sub_lt_left_of_lt_add this,
|
||
show (abs (X j - sX)) < ε, using eq₁ this, by rewrite eq₁; exact this)
|
||
|
||
definition nonincreasing (X : ℕ → ℝ) : Prop := ∀ ⦃i j⦄, i ≤ j → X i ≥ X j
|
||
|
||
proposition nodecreasing_of_nonincreasing_neg (nonincX : nonincreasing (λ n, - X n)) :
|
||
nondecreasing (λ n, X n) :=
|
||
take i j, suppose i ≤ j,
|
||
show X i ≤ X j, from le_of_neg_le_neg (nonincX this)
|
||
|
||
proposition noincreasing_neg_of_nondecreasing (nondecX : nondecreasing X) :
|
||
nonincreasing (λ n, - X n) :=
|
||
take i j, suppose i ≤ j,
|
||
show - X i ≥ - X j, from neg_le_neg (nondecX this)
|
||
|
||
proposition nonincreasing_neg_iff (X : ℕ → ℝ) : nonincreasing (λ n, - X n) ↔ nondecreasing X :=
|
||
iff.intro nodecreasing_of_nonincreasing_neg noincreasing_neg_of_nondecreasing
|
||
|
||
proposition nonincreasing_of_nondecreasing_neg (nondecX : nondecreasing (λ n, - X n)) :
|
||
nonincreasing (λ n, X n) :=
|
||
take i j, suppose i ≤ j,
|
||
show X i ≥ X j, from le_of_neg_le_neg (nondecX this)
|
||
|
||
proposition nodecreasing_neg_of_nonincreasing (nonincX : nonincreasing X) :
|
||
nondecreasing (λ n, - X n) :=
|
||
take i j, suppose i ≤ j,
|
||
show - X i ≤ - X j, from neg_le_neg (nonincX this)
|
||
|
||
proposition nondecreasing_neg_iff (X : ℕ → ℝ) : nondecreasing (λ n, - X n) ↔ nonincreasing X :=
|
||
iff.intro nonincreasing_of_nondecreasing_neg nodecreasing_neg_of_nonincreasing
|
||
|
||
proposition nonincreasing_of_forall_succ_le (H : ∀ i, X (succ i) ≤ X i) : nonincreasing X :=
|
||
begin
|
||
rewrite -nondecreasing_neg_iff,
|
||
show nondecreasing (λ n : ℕ, - X n), from
|
||
nondecreasing_of_forall_le_succ (take i, neg_le_neg (H i))
|
||
end
|
||
|
||
proposition converges_to_seq_inf_of_nonincreasing (nonincX : nonincreasing X) {b : ℝ}
|
||
(Hb : ∀ i, b ≤ X i) : X ⟶ inf (X '[univ]) in ℕ :=
|
||
have H₁ : ∃ x, x ∈ X '[univ], from exists.intro (X 0) (mem_image_of_mem X !mem_univ),
|
||
have H₂ : ∀ x, x ∈ X '[univ] → b ≤ x, from
|
||
(take x, assume H,
|
||
obtain i [Hi₁ (Hi₂ : X i = x)], from H,
|
||
show b ≤ x, by rewrite -Hi₂; apply Hb i),
|
||
have H₃ : {x : ℝ | -x ∈ X '[univ]} = {x : ℝ | x ∈ (λ n, -X n) '[univ]}, from calc
|
||
{x : ℝ | -x ∈ X '[univ]} = (λ y, -y) '[X '[univ]] : by rewrite image_neg_eq
|
||
... = {x : ℝ | x ∈ (λ n, -X n) '[univ]} : image_compose,
|
||
have H₄ : ∀ i, - X i ≤ - b, from take i, neg_le_neg (Hb i),
|
||
begin+
|
||
rewrite [-neg_converges_to_seq_iff, -sup_neg H₁ H₂, H₃, -nondecreasing_neg_iff at nonincX],
|
||
apply converges_to_seq_sup_of_nondecreasing nonincX H₄
|
||
end
|
||
|
||
end monotone_sequences
|
||
|
||
section xn
|
||
open nat set
|
||
|
||
theorem pow_converges_to_seq_zero {x : ℝ} (H : abs x < 1) :
|
||
(λ n, x^n) ⟶ 0 in ℕ :=
|
||
suffices H' : (λ n, (abs x)^n) ⟶ 0 in ℕ, from
|
||
have (λ n, (abs x)^n) = (λ n, abs (x^n)), from funext (take n, eq.symm !abs_pow),
|
||
using this,
|
||
by rewrite this at H'; exact converges_to_seq_zero_of_abs_converges_to_seq_zero H',
|
||
let aX := (λ n, (abs x)^n),
|
||
iaX := inf (aX '[univ]),
|
||
asX := (λ n, (abs x)^(succ n)) in
|
||
have noninc_aX : nonincreasing aX, from
|
||
nonincreasing_of_forall_succ_le
|
||
(take i,
|
||
assert (abs x) * (abs x)^i ≤ 1 * (abs x)^i,
|
||
from mul_le_mul_of_nonneg_right (le_of_lt H) (!pow_nonneg_of_nonneg !abs_nonneg),
|
||
assert (abs x) * (abs x)^i ≤ (abs x)^i, by krewrite one_mul at this; exact this,
|
||
show (abs x) ^ (succ i) ≤ (abs x)^i, by rewrite pow_succ; apply this),
|
||
have bdd_aX : ∀ i, 0 ≤ aX i, from take i, !pow_nonneg_of_nonneg !abs_nonneg,
|
||
assert aXconv : aX ⟶ iaX in ℕ, from converges_to_seq_inf_of_nonincreasing noninc_aX bdd_aX,
|
||
have asXconv : asX ⟶ iaX in ℕ, from metric_space.converges_to_seq_offset_succ aXconv,
|
||
have asXconv' : asX ⟶ (abs x) * iaX in ℕ, from mul_left_converges_to_seq (abs x) aXconv,
|
||
have iaX = (abs x) * iaX, from converges_to_seq_unique asXconv asXconv',
|
||
assert iaX = 0, from eq_zero_of_mul_eq_self_left (ne_of_lt H) (eq.symm this),
|
||
show aX ⟶ 0 in ℕ, begin rewrite -this, exact aXconv end --from this ▸ aXconv
|
||
|
||
end xn
|
||
|
||
section continuous
|
||
|
||
-- this definition should be inherited from metric_space once a migrate is done.
|
||
definition continuous (f : ℝ → ℝ) :=
|
||
∀ x : ℝ, ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ, abs (x - x') < δ → abs (f x - f x') < ε
|
||
|
||
theorem pos_on_nbhd_of_cts_of_pos {f : ℝ → ℝ} (Hf : continuous f) {b : ℝ} (Hb : f b > 0) :
|
||
∃ δ : ℝ, δ > 0 ∧ ∀ y, abs (b - y) < δ → f y > 0 :=
|
||
begin
|
||
let Hcont := Hf b Hb,
|
||
cases Hcont with δ Hδ,
|
||
existsi δ,
|
||
split,
|
||
exact and.left Hδ,
|
||
intro y Hy,
|
||
let Hy' := and.right Hδ y Hy,
|
||
let Hlt := sub_lt_of_abs_sub_lt_right Hy',
|
||
rewrite sub_self at Hlt,
|
||
assumption
|
||
end
|
||
|
||
theorem neg_on_nbhd_of_cts_of_neg {f : ℝ → ℝ} (Hf : continuous f) {b : ℝ} (Hb : f b < 0) :
|
||
∃ δ : ℝ, δ > 0 ∧ ∀ y, abs (b - y) < δ → f y < 0 :=
|
||
begin
|
||
let Hcont := Hf b (neg_pos_of_neg Hb),
|
||
cases Hcont with δ Hδ,
|
||
existsi δ,
|
||
split,
|
||
exact and.left Hδ,
|
||
intro y Hy,
|
||
let Hy' := and.right Hδ y Hy,
|
||
let Hlt := sub_lt_of_abs_sub_lt_left Hy',
|
||
let Hlt' := lt_add_of_sub_lt_right Hlt,
|
||
rewrite [-sub_eq_add_neg at Hlt', sub_self at Hlt'],
|
||
assumption
|
||
end
|
||
|
||
theorem neg_continuous_of_continuous {f : ℝ → ℝ} (Hcon : continuous f) : continuous (λ x, - f x) :=
|
||
begin
|
||
intros x ε Hε,
|
||
cases Hcon x Hε with δ Hδ,
|
||
cases Hδ with Hδ₁ Hδ₂,
|
||
existsi δ,
|
||
split,
|
||
assumption,
|
||
intros x' Hx',
|
||
let HD := Hδ₂ x' Hx',
|
||
rewrite [-abs_neg, neg_neg_sub_neg],
|
||
exact HD
|
||
end
|
||
|
||
theorem translate_continuous_of_continuous {f : ℝ → ℝ} (Hcon : continuous f) (a : ℝ) :
|
||
continuous (λ x, (f x) + a) :=
|
||
begin
|
||
intros x ε Hε,
|
||
cases Hcon x Hε with δ Hδ,
|
||
cases Hδ with Hδ₁ Hδ₂,
|
||
existsi δ,
|
||
split,
|
||
assumption,
|
||
intros x' Hx',
|
||
rewrite [add_sub_comm, sub_self, algebra.add_zero],
|
||
apply Hδ₂,
|
||
assumption
|
||
end
|
||
end continuous
|
||
|
||
section inter_val
|
||
open set
|
||
|
||
private definition inter_sup (a b : ℝ) (f : ℝ → ℝ) := sup {x | x < b ∧ f x < 0}
|
||
|
||
section
|
||
parameters {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) (Ha : f a < 0) (Hb : f b > 0)
|
||
include Hf Ha Hb Hab
|
||
|
||
private theorem Hinh : ∃ x, x ∈ {x | x < b ∧ f x < 0} := exists.intro a (and.intro Hab Ha)
|
||
|
||
private theorem Hmem : ∀ x, x ∈ {x | x < b ∧ f x < 0} → x ≤ b := λ x Hx, le_of_lt (and.left Hx)
|
||
|
||
private theorem Hsupleb : inter_sup a b f ≤ b := sup_le (Hinh) Hmem
|
||
|
||
local notation 2 := of_num 1 + of_num 1
|
||
|
||
private theorem ex_delta_lt {x : ℝ} (Hx : f x < 0) (Hxb : x < b) : ∃ δ : ℝ, δ > 0 ∧ x + δ < b ∧ f (x + δ) < 0 :=
|
||
begin
|
||
let Hcont := neg_on_nbhd_of_cts_of_neg Hf Hx,
|
||
cases Hcont with δ Hδ,
|
||
{cases em (x + δ < b) with Haδ Haδ,
|
||
existsi δ / 2,
|
||
split,
|
||
{exact div_pos_of_pos_of_pos (and.left Hδ) two_pos},
|
||
split,
|
||
{apply lt.trans,
|
||
apply add_lt_add_left,
|
||
exact div_two_lt_of_pos (and.left Hδ),
|
||
exact Haδ},
|
||
{apply and.right Hδ,
|
||
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
|
||
exact div_two_lt_of_pos (and.left Hδ)},
|
||
existsi (b - x) / 2,
|
||
split,
|
||
{apply div_pos_of_pos_of_pos,
|
||
exact sub_pos_of_lt Hxb,
|
||
exact two_pos},
|
||
split,
|
||
{apply add_midpoint Hxb},
|
||
{apply and.right Hδ,
|
||
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||
abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt Hxb) two_pos)],
|
||
apply lt_of_lt_of_le,
|
||
apply div_two_lt_of_pos (sub_pos_of_lt Hxb),
|
||
apply sub_left_le_of_le_add,
|
||
apply le_of_not_gt Haδ}}
|
||
end
|
||
|
||
private lemma sup_near_b {δ : ℝ} (Hpos : 0 < δ)
|
||
(Hgeb : inter_sup a b f + δ / 2 ≥ b) : abs (inter_sup a b f - b) < δ :=
|
||
begin
|
||
apply abs_lt_of_lt_of_neg_lt,
|
||
apply sub_lt_left_of_lt_add,
|
||
apply lt_of_le_of_lt,
|
||
apply Hsupleb,
|
||
apply lt_add_of_pos_right Hpos,
|
||
rewrite neg_sub,
|
||
apply sub_lt_left_of_lt_add,
|
||
apply lt_of_le_of_lt,
|
||
apply Hgeb,
|
||
apply add_lt_add_left,
|
||
apply div_two_lt_of_pos Hpos
|
||
end
|
||
|
||
private lemma delta_of_lt (Hflt : f (inter_sup a b f) < 0) :
|
||
∃ δ : ℝ, δ > 0 ∧ inter_sup a b f + δ < b ∧ f (inter_sup a b f + δ) < 0 :=
|
||
if Hlt : inter_sup a b f < b then ex_delta_lt Hflt Hlt else
|
||
begin
|
||
let Heq := eq_of_le_of_ge Hsupleb (le_of_not_gt Hlt),
|
||
apply absurd Hflt,
|
||
apply not_lt_of_ge,
|
||
apply le_of_lt,
|
||
rewrite Heq,
|
||
exact Hb
|
||
end
|
||
|
||
private theorem sup_fn_interval_aux1 : f (inter_sup a b f) ≥ 0 :=
|
||
have ¬ f (inter_sup a b f) < 0, from
|
||
(suppose f (inter_sup a b f) < 0,
|
||
obtain δ Hδ, from delta_of_lt this,
|
||
have inter_sup a b f + δ ∈ {x | x < b ∧ f x < 0},
|
||
from and.intro (and.left (and.right Hδ)) (and.right (and.right Hδ)),
|
||
have ¬ inter_sup a b f < inter_sup a b f + δ,
|
||
from not_lt_of_ge (le_sup this Hmem),
|
||
show false, from this (lt_add_of_pos_right (and.left Hδ))),
|
||
le_of_not_gt this
|
||
|
||
private theorem sup_fn_interval_aux2 : f (inter_sup a b f) ≤ 0 :=
|
||
have ¬ f (inter_sup a b f) > 0, from
|
||
(assume Hfsup : f (inter_sup a b f) > 0,
|
||
obtain δ Hδ, from pos_on_nbhd_of_cts_of_pos Hf Hfsup,
|
||
have ∀ x, x ∈ {x | x < b ∧ f x < 0} → x ≤ inter_sup a b f - δ / 2, from
|
||
(take x, assume Hxset : x ∈ {x | x < b ∧ f x < 0},
|
||
have ¬ x > inter_sup a b f - δ / 2, from
|
||
(assume Hngt,
|
||
have Habs : abs (inter_sup a b f - x) < δ, begin
|
||
apply abs_lt_of_lt_of_neg_lt,
|
||
apply sub_lt_of_sub_lt,
|
||
apply gt.trans,
|
||
exact Hngt,
|
||
apply sub_lt_sub_left,
|
||
exact div_two_lt_of_pos (and.left Hδ),
|
||
rewrite neg_sub,
|
||
apply lt_of_le_of_lt,
|
||
rotate 1,
|
||
apply and.left Hδ,
|
||
apply sub_nonpos_of_le,
|
||
apply le_sup,
|
||
exact Hxset,
|
||
exact Hmem
|
||
end,
|
||
have f x > 0, from and.right Hδ x Habs,
|
||
show false, from (not_lt_of_gt this) (and.right Hxset)),
|
||
le_of_not_gt this),
|
||
have Hle : inter_sup a b f ≤ inter_sup a b f - δ / 2, from sup_le Hinh this,
|
||
show false, from not_le_of_gt
|
||
(sub_lt_of_pos _ (div_pos_of_pos_of_pos (and.left Hδ) (two_pos))) Hle),
|
||
le_of_not_gt this
|
||
|
||
private theorem sup_fn_interval : f (inter_sup a b f) = 0 :=
|
||
eq_of_le_of_ge sup_fn_interval_aux2 sup_fn_interval_aux1
|
||
|
||
|
||
private theorem intermediate_value_incr_aux2 : ∃ δ : ℝ, δ > 0 ∧ a + δ < b ∧ f (a + δ) < 0 :=
|
||
begin
|
||
let Hcont := neg_on_nbhd_of_cts_of_neg Hf Ha,
|
||
cases Hcont with δ Hδ,
|
||
{cases em (a + δ < b) with Haδ Haδ,
|
||
existsi δ / 2,
|
||
split,
|
||
{exact div_pos_of_pos_of_pos (and.left Hδ) two_pos},
|
||
split,
|
||
{apply lt.trans,
|
||
apply add_lt_add_left,
|
||
exact div_two_lt_of_pos (and.left Hδ),
|
||
exact Haδ},
|
||
{apply and.right Hδ,
|
||
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
|
||
exact div_two_lt_of_pos (and.left Hδ)},
|
||
existsi (b - a) / 2,
|
||
split,
|
||
{apply div_pos_of_pos_of_pos,
|
||
exact sub_pos_of_lt Hab,
|
||
exact two_pos},
|
||
split,
|
||
{apply add_midpoint Hab},
|
||
{apply and.right Hδ,
|
||
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||
abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt Hab) two_pos)],
|
||
apply lt_of_lt_of_le,
|
||
apply div_two_lt_of_pos (sub_pos_of_lt Hab),
|
||
apply sub_left_le_of_le_add,
|
||
apply le_of_not_gt Haδ}}
|
||
end
|
||
|
||
theorem intermediate_value_incr_zero : ∃ c, a < c ∧ c < b ∧ f c = 0 :=
|
||
begin
|
||
existsi inter_sup a b f,
|
||
split,
|
||
{cases intermediate_value_incr_aux2 with δ Hδ,
|
||
apply lt_of_lt_of_le,
|
||
apply lt_add_of_pos_right,
|
||
exact and.left Hδ,
|
||
apply le_sup,
|
||
exact and.right Hδ,
|
||
intro x Hx,
|
||
apply le_of_lt,
|
||
exact and.left Hx},
|
||
split,
|
||
{cases pos_on_nbhd_of_cts_of_pos Hf Hb with δ Hδ,
|
||
apply lt_of_le_of_lt,
|
||
rotate 1,
|
||
apply sub_lt_of_pos,
|
||
exact and.left Hδ,
|
||
rotate_right 1,
|
||
apply sup_le,
|
||
exact exists.intro a (and.intro Hab Ha),
|
||
intro x Hx,
|
||
apply le_of_not_gt,
|
||
intro Hxgt,
|
||
have Hxgt' : b - x < δ, from sub_lt_of_sub_lt Hxgt,
|
||
krewrite -(abs_of_pos (sub_pos_of_lt (and.left Hx))) at Hxgt',
|
||
let Hxgt'' := and.right Hδ _ Hxgt',
|
||
exact not_lt_of_ge (le_of_lt Hxgt'') (and.right Hx)},
|
||
{exact sup_fn_interval}
|
||
end
|
||
|
||
end
|
||
|
||
theorem intermediate_value_decr_zero {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b)
|
||
(Ha : f a > 0) (Hb : f b < 0) : ∃ c, a < c ∧ c < b ∧ f c = 0 :=
|
||
begin
|
||
have Ha' : - f a < 0, from neg_neg_of_pos Ha,
|
||
have Hb' : - f b > 0, from neg_pos_of_neg Hb,
|
||
have Hcon : continuous (λ x, - f x), from neg_continuous_of_continuous Hf,
|
||
let Hiv := intermediate_value_incr_zero Hcon Hab Ha' Hb',
|
||
cases Hiv with c Hc,
|
||
existsi c,
|
||
split,
|
||
exact and.left Hc,
|
||
split,
|
||
exact and.left (and.right Hc),
|
||
apply eq_zero_of_neg_eq_zero,
|
||
apply and.right (and.right Hc)
|
||
end
|
||
|
||
theorem intermediate_value_incr {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) {v : ℝ}
|
||
(Hav : f a < v) (Hbv : f b > v) : ∃ c, a < c ∧ c < b ∧ f c = v :=
|
||
have Hav' : f a - v < 0, from sub_neg_of_lt Hav,
|
||
have Hbv' : f b - v > 0, from sub_pos_of_lt Hbv,
|
||
have Hcon : continuous (λ x, f x - v), from translate_continuous_of_continuous Hf _,
|
||
have Hiv : ∃ c, a < c ∧ c < b ∧ f c - v = 0, from intermediate_value_incr_zero Hcon Hab Hav' Hbv',
|
||
obtain c Hc, from Hiv,
|
||
exists.intro c
|
||
(and.intro (and.left Hc) (and.intro (and.left (and.right Hc)) (eq_of_sub_eq_zero (and.right (and.right Hc)))))
|
||
|
||
theorem intermediate_value_decr {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) {v : ℝ}
|
||
(Hav : f a > v) (Hbv : f b < v) : ∃ c, a < c ∧ c < b ∧ f c = v :=
|
||
have Hav' : f a - v > 0, from sub_pos_of_lt Hav,
|
||
have Hbv' : f b - v < 0, from sub_neg_of_lt Hbv,
|
||
have Hcon : continuous (λ x, f x - v), from translate_continuous_of_continuous Hf _,
|
||
have Hiv : ∃ c, a < c ∧ c < b ∧ f c - v = 0, from intermediate_value_decr_zero Hcon Hab Hav' Hbv',
|
||
obtain c Hc, from Hiv,
|
||
exists.intro c
|
||
(and.intro (and.left Hc) (and.intro (and.left (and.right Hc)) (eq_of_sub_eq_zero (and.right (and.right Hc)))))
|
||
|
||
end inter_val
|
||
|
||
/-
|
||
proposition converges_to_at_unique {f : M → N} {y₁ y₂ : N} {x : M}
|
||
(H₁ : f ⟶ y₁ '[at x]) (H₂ : f ⟶ y₂ '[at x]) : y₁ = y₂ :=
|
||
eq_of_forall_dist_le
|
||
(take ε, suppose ε > 0,
|
||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||
obtain δ₁ [(δ₁pos : δ₁ > 0) (Hδ₁ : ∀ x', x ≠ x' ∧ dist x x' < δ₁ → dist (f x') y₁ < ε / 2)],
|
||
from H₁ e2pos,
|
||
obtain δ₂ [(δ₂pos : δ₂ > 0) (Hδ₂ : ∀ x', x ≠ x' ∧ dist x x' < δ₂ → dist (f x') y₂ < ε / 2)],
|
||
from H₂ e2pos,
|
||
let δ := min δ₁ δ₂ in
|
||
have δ > 0, from lt_min δ₁pos δ₂pos,
|
||
|
||
-/
|
||
|
||
end real
|