lean2/library/logic/decidable.lean
2014-10-05 10:50:13 -07:00

99 lines
3.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic.connectives
inductive decidable (p : Prop) : Type :=
inl : p → decidable p,
inr : ¬p → decidable p
namespace decidable
definition true_decidable [instance] : decidable true :=
inl trivial
definition false_decidable [instance] : decidable false :=
inr not_false_trivial
protected theorem induction_on {p : Prop} {C : Prop} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C :=
decidable.rec H1 H2 H
protected definition rec_on {p : Prop} {C : Type} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) :
C :=
decidable.rec H1 H2 H
theorem irrelevant {p : Prop} (d1 d2 : decidable p) : d1 = d2 :=
decidable.rec
(assume Hp1 : p, decidable.rec
(assume Hp2 : p, congr_arg inl (eq.refl Hp1)) -- using proof irrelevance for Prop
(assume Hnp2 : ¬p, absurd Hp1 Hnp2)
d2)
(assume Hnp1 : ¬p, decidable.rec
(assume Hp2 : p, absurd Hp2 Hnp1)
(assume Hnp2 : ¬p, congr_arg inr (eq.refl Hnp1)) -- using proof irrelevance for Prop
d2)
d1
theorem em (p : Prop) {H : decidable p} : p ¬p :=
induction_on H (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp)
definition by_cases {a : Prop} {b : Type} {C : decidable a} (Hab : a → b) (Hnab : ¬a → b) : b :=
rec_on C (assume Ha, Hab Ha) (assume Hna, Hnab Hna)
theorem by_contradiction {p : Prop} {Hp : decidable p} (H : ¬p → false) : p :=
or.elim (em p)
(assume H1 : p, H1)
(assume H1 : ¬p, false_elim (H H1))
definition and_decidable [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) :
decidable (a ∧ b) :=
rec_on Ha
(assume Ha : a, rec_on Hb
(assume Hb : b, inl (and.intro Ha Hb))
(assume Hnb : ¬b, inr (and.not_right a Hnb)))
(assume Hna : ¬a, inr (and.not_left b Hna))
definition or_decidable [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) :
decidable (a b) :=
rec_on Ha
(assume Ha : a, inl (or.inl Ha))
(assume Hna : ¬a, rec_on Hb
(assume Hb : b, inl (or.inr Hb))
(assume Hnb : ¬b, inr (or.not_intro Hna Hnb)))
definition not_decidable [instance] {a : Prop} (Ha : decidable a) : decidable (¬a) :=
rec_on Ha
(assume Ha, inr (not_not_intro Ha))
(assume Hna, inl Hna)
definition iff_decidable [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) :
decidable (a ↔ b) :=
rec_on Ha
(assume Ha, rec_on Hb
(assume Hb : b, inl (iff.intro (assume H, Hb) (assume H, Ha)))
(assume Hnb : ¬b, inr (assume H : a ↔ b, absurd (iff.elim_left H Ha) Hnb)))
(assume Hna, rec_on Hb
(assume Hb : b, inr (assume H : a ↔ b, absurd (iff.elim_right H Hb) Hna))
(assume Hnb : ¬b, inl
(iff.intro (assume Ha, absurd Ha Hna) (assume Hb, absurd Hb Hnb))))
definition implies_decidable [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) :
decidable (a → b) :=
rec_on Ha
(assume Ha : a, rec_on Hb
(assume Hb : b, inl (assume H, Hb))
(assume Hnb : ¬b, inr (assume H : a → b, absurd (H Ha) Hnb)))
(assume Hna : ¬a, inl (assume Ha, absurd Ha Hna))
definition decidable_iff_equiv {a b : Prop} (Ha : decidable a) (H : a ↔ b) : decidable b :=
rec_on Ha
(assume Ha : a, inl (iff.elim_left H Ha))
(assume Hna : ¬a, inr (iff.elim_left (iff.flip_sign H) Hna))
definition decidable_eq_equiv {a b : Prop} (Ha : decidable a) (H : a = b) : decidable b :=
decidable_iff_equiv Ha (eq_to_iff H)
end decidable
definition decidable_eq (A : Type) := Π (a b : A), decidable (a = b)